iEEG‐recon: A fast and scalable pipeline for accurate reconstruction of intracranial electrodes and implantable devices

计算机科学 工作流程 可扩展性 模块化设计 管道(软件) 癫痫外科 人工智能 神经影像学 癫痫 计算机视觉 神经科学 数据库 心理学 程序设计语言 操作系统
作者
Alfredo Lucas,Brittany H. Scheid,Akash R. Pattnaik,Ryan S. Gallagher,Marissa Mojena,Ashley Tranquille,Brian Prager,Ezequiel Gleichgerrcht,Ruxue Gong,Brian Litt,Kathryn A. Davis,Sandhitsu R. Das,Joel M. Stein,Nishant Sinha
出处
期刊:Epilepsia [Wiley]
卷期号:65 (3): 817-829 被引量:6
标识
DOI:10.1111/epi.17863
摘要

Abstract Objective Clinicians use intracranial electroencephalography (iEEG) in conjunction with noninvasive brain imaging to identify epileptic networks and target therapy for drug‐resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of “electrode reconstruction,” which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. We developed a standalone, modular pipeline that performs electrode reconstruction. We demonstrate our tool's compatibility with clinical and research workflows and its scalability on cloud platforms. Methods We created iEEG‐recon, a scalable electrode reconstruction pipeline for semiautomatic iEEG annotation, rapid image registration, and electrode assignment on brain magnetic resonance imaging (MRI). Its modular architecture includes a clinical module for electrode labeling and localization, and a research module for automated data processing and electrode contact assignment. To ensure accessibility for users with limited programming and imaging expertise, we packaged iEEG‐recon in a containerized format that allows integration into clinical workflows. We propose a cloud‐based implementation of iEEG‐recon and test our pipeline on data from 132 patients at two epilepsy centers using retrospective and prospective cohorts. Results We used iEEG‐recon to accurately reconstruct electrodes in both electrocorticography and stereoelectroencephalography cases with a 30‐min running time per case (including semiautomatic electrode labeling and reconstruction). iEEG‐recon generates quality assurance reports and visualizations to support epilepsy surgery discussions. Reconstruction outputs from the clinical module were radiologically validated through pre‐ and postimplant T1‐MRI visual inspections. We also found that our use of ANTsPyNet deep learning‐based brain segmentation for electrode classification was consistent with the widely used FreeSurfer segmentations. Significance iEEG‐recon is a robust pipeline for automating reconstruction of iEEG electrodes and implantable devices on brain MRI, promoting fast data analysis and integration into clinical workflows. iEEG‐recon's accuracy, speed, and compatibility with cloud platforms make it a useful resource for epilepsy centers worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可以的完成签到,获得积分10
刚刚
sikh完成签到,获得积分10
刚刚
周二完成签到 ,获得积分10
刚刚
管江丽发布了新的文献求助10
1秒前
明杰完成签到,获得积分20
2秒前
2秒前
越遇完成签到 ,获得积分10
2秒前
西瓜橙子完成签到,获得积分10
2秒前
3秒前
4秒前
不配.应助科研小笨猪采纳,获得10
4秒前
Lin_Yongqi完成签到 ,获得积分10
4秒前
德鲁猪完成签到,获得积分10
4秒前
冷傲菠萝完成签到 ,获得积分10
4秒前
平常的梦完成签到,获得积分10
5秒前
5秒前
shuang0116完成签到,获得积分0
6秒前
7秒前
WXY完成签到,获得积分10
7秒前
啊娴仔发布了新的文献求助10
8秒前
小二郎应助管江丽采纳,获得10
8秒前
科研民工完成签到,获得积分10
8秒前
De.完成签到 ,获得积分10
8秒前
曼曼来完成签到,获得积分10
9秒前
霡霂完成签到,获得积分10
9秒前
xxx完成签到 ,获得积分10
10秒前
小飞飞完成签到,获得积分10
10秒前
媛媛子完成签到 ,获得积分10
11秒前
NexusExplorer应助夜猫酱酱子采纳,获得10
11秒前
12秒前
13秒前
kk子完成签到,获得积分10
14秒前
乔巴完成签到,获得积分10
14秒前
CipherSage应助FERN0826采纳,获得10
14秒前
Zj完成签到,获得积分10
14秒前
拼搏的青雪完成签到,获得积分10
15秒前
Leorihy19完成签到,获得积分10
15秒前
科研小笨猪完成签到,获得积分10
15秒前
无奈世立完成签到,获得积分10
15秒前
Amos发布了新的文献求助10
16秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180102
求助须知:如何正确求助?哪些是违规求助? 2830482
关于积分的说明 7977443
捐赠科研通 2492067
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954