iEEG‐recon: A fast and scalable pipeline for accurate reconstruction of intracranial electrodes and implantable devices

计算机科学 工作流程 可扩展性 模块化设计 管道(软件) 癫痫外科 人工智能 神经影像学 癫痫 计算机视觉 神经科学 数据库 心理学 程序设计语言 操作系统
作者
Alfredo Lucas,Brittany H. Scheid,Akash R. Pattnaik,Ryan S. Gallagher,Marissa Mojena,Ashley Tranquille,Brian Prager,Ezequiel Gleichgerrcht,Ruxue Gong,Brian Litt,Kathryn A. Davis,Sandhitsu R. Das,Joel M. Stein,Nishant Sinha
出处
期刊:Epilepsia [Wiley]
卷期号:65 (3): 817-829 被引量:6
标识
DOI:10.1111/epi.17863
摘要

Abstract Objective Clinicians use intracranial electroencephalography (iEEG) in conjunction with noninvasive brain imaging to identify epileptic networks and target therapy for drug‐resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of “electrode reconstruction,” which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. We developed a standalone, modular pipeline that performs electrode reconstruction. We demonstrate our tool's compatibility with clinical and research workflows and its scalability on cloud platforms. Methods We created iEEG‐recon, a scalable electrode reconstruction pipeline for semiautomatic iEEG annotation, rapid image registration, and electrode assignment on brain magnetic resonance imaging (MRI). Its modular architecture includes a clinical module for electrode labeling and localization, and a research module for automated data processing and electrode contact assignment. To ensure accessibility for users with limited programming and imaging expertise, we packaged iEEG‐recon in a containerized format that allows integration into clinical workflows. We propose a cloud‐based implementation of iEEG‐recon and test our pipeline on data from 132 patients at two epilepsy centers using retrospective and prospective cohorts. Results We used iEEG‐recon to accurately reconstruct electrodes in both electrocorticography and stereoelectroencephalography cases with a 30‐min running time per case (including semiautomatic electrode labeling and reconstruction). iEEG‐recon generates quality assurance reports and visualizations to support epilepsy surgery discussions. Reconstruction outputs from the clinical module were radiologically validated through pre‐ and postimplant T1‐MRI visual inspections. We also found that our use of ANTsPyNet deep learning‐based brain segmentation for electrode classification was consistent with the widely used FreeSurfer segmentations. Significance iEEG‐recon is a robust pipeline for automating reconstruction of iEEG electrodes and implantable devices on brain MRI, promoting fast data analysis and integration into clinical workflows. iEEG‐recon's accuracy, speed, and compatibility with cloud platforms make it a useful resource for epilepsy centers worldwide.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助大胆的如凡采纳,获得10
1秒前
Mic应助去月球数星星采纳,获得10
2秒前
天玄发布了新的文献求助10
3秒前
蜗牛发布了新的文献求助10
3秒前
阿啵呲嘚完成签到,获得积分10
4秒前
7秒前
10秒前
14秒前
靳欣妍完成签到 ,获得积分10
14秒前
外向太阳完成签到,获得积分10
15秒前
huanir99发布了新的文献求助10
15秒前
1434683426完成签到 ,获得积分10
15秒前
科研通AI6应助徐梓睿采纳,获得30
16秒前
16秒前
17秒前
18秒前
二三发布了新的文献求助10
18秒前
完美世界应助Weiweiweixiao采纳,获得20
19秒前
远了个方发布了新的文献求助10
21秒前
woody完成签到,获得积分10
23秒前
25秒前
萤火未央完成签到,获得积分10
27秒前
远了个方完成签到,获得积分10
27秒前
28秒前
小豹子发布了新的文献求助10
28秒前
28秒前
蜗牛完成签到,获得积分10
28秒前
完美世界应助Leelelele采纳,获得30
29秒前
天天快乐应助strzeng采纳,获得10
30秒前
bless完成签到,获得积分10
31秒前
32秒前
数学情缘发布了新的文献求助10
33秒前
朝阳满意发布了新的文献求助10
36秒前
36秒前
丘比特应助adalove采纳,获得10
36秒前
天天快乐应助huanir99采纳,获得10
36秒前
36秒前
39秒前
222完成签到 ,获得积分20
39秒前
bobola发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560604
求助须知:如何正确求助?哪些是违规求助? 4645922
关于积分的说明 14676435
捐赠科研通 4587037
什么是DOI,文献DOI怎么找? 2516766
邀请新用户注册赠送积分活动 1490270
关于科研通互助平台的介绍 1461099