iEEG‐recon: A fast and scalable pipeline for accurate reconstruction of intracranial electrodes and implantable devices

计算机科学 工作流程 可扩展性 模块化设计 管道(软件) 癫痫外科 人工智能 神经影像学 癫痫 计算机视觉 神经科学 数据库 心理学 程序设计语言 操作系统
作者
Alfredo Lucas,Brittany H. Scheid,Akash R. Pattnaik,Ryan S. Gallagher,Marissa Mojena,Ashley Tranquille,Brian Prager,Ezequiel Gleichgerrcht,Ruxue Gong,Brian Litt,Kathryn A. Davis,Sandhitsu R. Das,Joel M. Stein,Nishant Sinha
出处
期刊:Epilepsia [Wiley]
卷期号:65 (3): 817-829 被引量:6
标识
DOI:10.1111/epi.17863
摘要

Abstract Objective Clinicians use intracranial electroencephalography (iEEG) in conjunction with noninvasive brain imaging to identify epileptic networks and target therapy for drug‐resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of “electrode reconstruction,” which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. We developed a standalone, modular pipeline that performs electrode reconstruction. We demonstrate our tool's compatibility with clinical and research workflows and its scalability on cloud platforms. Methods We created iEEG‐recon, a scalable electrode reconstruction pipeline for semiautomatic iEEG annotation, rapid image registration, and electrode assignment on brain magnetic resonance imaging (MRI). Its modular architecture includes a clinical module for electrode labeling and localization, and a research module for automated data processing and electrode contact assignment. To ensure accessibility for users with limited programming and imaging expertise, we packaged iEEG‐recon in a containerized format that allows integration into clinical workflows. We propose a cloud‐based implementation of iEEG‐recon and test our pipeline on data from 132 patients at two epilepsy centers using retrospective and prospective cohorts. Results We used iEEG‐recon to accurately reconstruct electrodes in both electrocorticography and stereoelectroencephalography cases with a 30‐min running time per case (including semiautomatic electrode labeling and reconstruction). iEEG‐recon generates quality assurance reports and visualizations to support epilepsy surgery discussions. Reconstruction outputs from the clinical module were radiologically validated through pre‐ and postimplant T1‐MRI visual inspections. We also found that our use of ANTsPyNet deep learning‐based brain segmentation for electrode classification was consistent with the widely used FreeSurfer segmentations. Significance iEEG‐recon is a robust pipeline for automating reconstruction of iEEG electrodes and implantable devices on brain MRI, promoting fast data analysis and integration into clinical workflows. iEEG‐recon's accuracy, speed, and compatibility with cloud platforms make it a useful resource for epilepsy centers worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助研友_MLJldZ采纳,获得10
刚刚
桐桐应助guigui采纳,获得10
刚刚
可爱的函函应助Sichen孟采纳,获得10
1秒前
1秒前
科研通AI6应助王曼曼采纳,获得30
2秒前
倪好发布了新的文献求助10
2秒前
3秒前
reading gene完成签到,获得积分10
4秒前
4秒前
科研通AI6应助靓丽的如天采纳,获得100
4秒前
5秒前
5秒前
6秒前
小鹿爱科研完成签到 ,获得积分10
6秒前
hbpu230701完成签到,获得积分10
6秒前
6秒前
6秒前
jing完成签到,获得积分10
6秒前
7秒前
JamesPei应助terryok采纳,获得20
8秒前
8秒前
liulala发布了新的文献求助10
8秒前
宋熠完成签到,获得积分10
9秒前
现代宛丝发布了新的文献求助10
9秒前
9秒前
9秒前
我到了啊完成签到,获得积分10
10秒前
11秒前
星辰大海应助ray采纳,获得10
11秒前
gyh发布了新的文献求助10
11秒前
lixm发布了新的文献求助10
11秒前
12秒前
沙砾完成签到,获得积分10
12秒前
kjwu发布了新的文献求助10
12秒前
cz发布了新的文献求助10
12秒前
mieyy完成签到,获得积分10
12秒前
Damon完成签到,获得积分10
13秒前
一点完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728