iEEG‐recon: A fast and scalable pipeline for accurate reconstruction of intracranial electrodes and implantable devices

计算机科学 工作流程 可扩展性 模块化设计 管道(软件) 癫痫外科 人工智能 神经影像学 癫痫 计算机视觉 神经科学 数据库 心理学 程序设计语言 操作系统
作者
Alfredo Lucas,Brittany H. Scheid,Akash R. Pattnaik,Ryan S. Gallagher,Marissa Mojena,Ashley Tranquille,Brian Prager,Ezequiel Gleichgerrcht,Ruxue Gong,Brian Litt,Kathryn A. Davis,Sandhitsu R. Das,Joel M. Stein,Nishant Sinha
出处
期刊:Epilepsia [Wiley]
卷期号:65 (3): 817-829 被引量:6
标识
DOI:10.1111/epi.17863
摘要

Abstract Objective Clinicians use intracranial electroencephalography (iEEG) in conjunction with noninvasive brain imaging to identify epileptic networks and target therapy for drug‐resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of “electrode reconstruction,” which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. We developed a standalone, modular pipeline that performs electrode reconstruction. We demonstrate our tool's compatibility with clinical and research workflows and its scalability on cloud platforms. Methods We created iEEG‐recon, a scalable electrode reconstruction pipeline for semiautomatic iEEG annotation, rapid image registration, and electrode assignment on brain magnetic resonance imaging (MRI). Its modular architecture includes a clinical module for electrode labeling and localization, and a research module for automated data processing and electrode contact assignment. To ensure accessibility for users with limited programming and imaging expertise, we packaged iEEG‐recon in a containerized format that allows integration into clinical workflows. We propose a cloud‐based implementation of iEEG‐recon and test our pipeline on data from 132 patients at two epilepsy centers using retrospective and prospective cohorts. Results We used iEEG‐recon to accurately reconstruct electrodes in both electrocorticography and stereoelectroencephalography cases with a 30‐min running time per case (including semiautomatic electrode labeling and reconstruction). iEEG‐recon generates quality assurance reports and visualizations to support epilepsy surgery discussions. Reconstruction outputs from the clinical module were radiologically validated through pre‐ and postimplant T1‐MRI visual inspections. We also found that our use of ANTsPyNet deep learning‐based brain segmentation for electrode classification was consistent with the widely used FreeSurfer segmentations. Significance iEEG‐recon is a robust pipeline for automating reconstruction of iEEG electrodes and implantable devices on brain MRI, promoting fast data analysis and integration into clinical workflows. iEEG‐recon's accuracy, speed, and compatibility with cloud platforms make it a useful resource for epilepsy centers worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘科研顺利完成签到 ,获得积分10
1秒前
姜颖完成签到 ,获得积分10
1秒前
2秒前
瞌睡不打瞌完成签到,获得积分10
2秒前
回答完成签到,获得积分20
2秒前
Pauline完成签到,获得积分10
3秒前
1122发布了新的文献求助10
3秒前
Line发布了新的文献求助10
3秒前
材料小白完成签到,获得积分10
3秒前
张小兔啊完成签到,获得积分10
3秒前
他也蓝发布了新的文献求助10
4秒前
wbgwudi完成签到,获得积分10
4秒前
哈哈哈发布了新的文献求助10
4秒前
科研通AI5应助drughunter采纳,获得10
4秒前
自然的雁芙完成签到 ,获得积分10
5秒前
wp完成签到,获得积分10
5秒前
6秒前
DyLan完成签到,获得积分10
6秒前
huiyou完成签到,获得积分10
7秒前
陈飞飞发布了新的文献求助10
7秒前
MXene应助十里长亭采纳,获得10
7秒前
可耐的乘风应助a31采纳,获得10
8秒前
Ga完成签到,获得积分20
8秒前
CodeCraft应助Nozomi采纳,获得10
8秒前
MaYue完成签到,获得积分10
10秒前
10秒前
红烧茄子完成签到,获得积分10
10秒前
CipherSage应助XY采纳,获得10
11秒前
ZG完成签到,获得积分10
11秒前
旺仔先生完成签到,获得积分0
12秒前
lyh完成签到,获得积分10
12秒前
榴莲牛奶发布了新的文献求助20
12秒前
简单完成签到,获得积分20
13秒前
4645发布了新的文献求助10
13秒前
13秒前
pluto应助曹子轩采纳,获得10
14秒前
斯寜应助偷乐采纳,获得10
14秒前
tcf完成签到,获得积分10
14秒前
花里胡哨的花完成签到 ,获得积分10
14秒前
我是站长才怪给33的求助进行了留言
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280826
关于积分的说明 10021216
捐赠科研通 2997475
什么是DOI,文献DOI怎么找? 1644637
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749705