iEEG‐recon: A fast and scalable pipeline for accurate reconstruction of intracranial electrodes and implantable devices

计算机科学 工作流程 可扩展性 模块化设计 管道(软件) 癫痫外科 人工智能 神经影像学 癫痫 计算机视觉 神经科学 数据库 心理学 程序设计语言 操作系统
作者
Alfredo Lucas,Brittany H. Scheid,Akash R. Pattnaik,Ryan S. Gallagher,Marissa Mojena,Ashley Tranquille,Brian Prager,Ezequiel Gleichgerrcht,Ruxue Gong,Brian Litt,Kathryn A. Davis,Sandhitsu R. Das,Joel M. Stein,Nishant Sinha
出处
期刊:Epilepsia [Wiley]
卷期号:65 (3): 817-829 被引量:6
标识
DOI:10.1111/epi.17863
摘要

Abstract Objective Clinicians use intracranial electroencephalography (iEEG) in conjunction with noninvasive brain imaging to identify epileptic networks and target therapy for drug‐resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of “electrode reconstruction,” which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. We developed a standalone, modular pipeline that performs electrode reconstruction. We demonstrate our tool's compatibility with clinical and research workflows and its scalability on cloud platforms. Methods We created iEEG‐recon, a scalable electrode reconstruction pipeline for semiautomatic iEEG annotation, rapid image registration, and electrode assignment on brain magnetic resonance imaging (MRI). Its modular architecture includes a clinical module for electrode labeling and localization, and a research module for automated data processing and electrode contact assignment. To ensure accessibility for users with limited programming and imaging expertise, we packaged iEEG‐recon in a containerized format that allows integration into clinical workflows. We propose a cloud‐based implementation of iEEG‐recon and test our pipeline on data from 132 patients at two epilepsy centers using retrospective and prospective cohorts. Results We used iEEG‐recon to accurately reconstruct electrodes in both electrocorticography and stereoelectroencephalography cases with a 30‐min running time per case (including semiautomatic electrode labeling and reconstruction). iEEG‐recon generates quality assurance reports and visualizations to support epilepsy surgery discussions. Reconstruction outputs from the clinical module were radiologically validated through pre‐ and postimplant T1‐MRI visual inspections. We also found that our use of ANTsPyNet deep learning‐based brain segmentation for electrode classification was consistent with the widely used FreeSurfer segmentations. Significance iEEG‐recon is a robust pipeline for automating reconstruction of iEEG electrodes and implantable devices on brain MRI, promoting fast data analysis and integration into clinical workflows. iEEG‐recon's accuracy, speed, and compatibility with cloud platforms make it a useful resource for epilepsy centers worldwide.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐佳达完成签到,获得积分10
1秒前
燕荣完成签到 ,获得积分10
2秒前
3秒前
wen完成签到,获得积分10
4秒前
上官若男应助Xx采纳,获得10
5秒前
bing完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
番茄大王开心心完成签到 ,获得积分10
8秒前
Dali应助元谷雪采纳,获得10
9秒前
研友_knggYn完成签到,获得积分0
9秒前
69qq发布了新的文献求助30
9秒前
sam完成签到,获得积分10
9秒前
9秒前
XiaoMaomi完成签到,获得积分10
11秒前
songyl完成签到,获得积分10
14秒前
小齐怪完成签到,获得积分20
14秒前
脆啵啵马克宝完成签到 ,获得积分10
17秒前
暄暄发布了新的文献求助10
17秒前
Andy完成签到,获得积分10
17秒前
干净的雅青完成签到,获得积分10
18秒前
Biofly526完成签到,获得积分10
18秒前
19秒前
22秒前
dengdeng发布了新的文献求助10
22秒前
楼北完成签到,获得积分0
23秒前
明明就完成签到 ,获得积分10
23秒前
冷傲凝琴完成签到,获得积分10
24秒前
严锦强完成签到,获得积分10
25秒前
deng完成签到 ,获得积分10
26秒前
26秒前
Ch_7完成签到,获得积分10
26秒前
cc完成签到,获得积分10
27秒前
FashionBoy应助dengdeng采纳,获得10
28秒前
文静的行恶完成签到,获得积分10
28秒前
汉堡包应助大力惜海采纳,获得10
31秒前
傲娇的咖啡豆完成签到,获得积分10
33秒前
舒心完成签到,获得积分10
37秒前
宇文数学完成签到,获得积分10
38秒前
一兜哇完成签到 ,获得积分10
39秒前
Dali应助元谷雪采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603532
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854133
捐赠科研通 4693329
什么是DOI,文献DOI怎么找? 2540799
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471806