iEEG‐recon: A fast and scalable pipeline for accurate reconstruction of intracranial electrodes and implantable devices

计算机科学 工作流程 可扩展性 模块化设计 管道(软件) 癫痫外科 人工智能 神经影像学 癫痫 计算机视觉 神经科学 数据库 心理学 程序设计语言 操作系统
作者
Alfredo Lucas,Brittany H. Scheid,Akash R. Pattnaik,Ryan S. Gallagher,Marissa Mojena,Ashley Tranquille,Brian Prager,Ezequiel Gleichgerrcht,Ruxue Gong,Brian Litt,Kathryn A. Davis,Sandhitsu R. Das,Joel M. Stein,Nishant Sinha
出处
期刊:Epilepsia [Wiley]
卷期号:65 (3): 817-829 被引量:6
标识
DOI:10.1111/epi.17863
摘要

Abstract Objective Clinicians use intracranial electroencephalography (iEEG) in conjunction with noninvasive brain imaging to identify epileptic networks and target therapy for drug‐resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of “electrode reconstruction,” which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. We developed a standalone, modular pipeline that performs electrode reconstruction. We demonstrate our tool's compatibility with clinical and research workflows and its scalability on cloud platforms. Methods We created iEEG‐recon, a scalable electrode reconstruction pipeline for semiautomatic iEEG annotation, rapid image registration, and electrode assignment on brain magnetic resonance imaging (MRI). Its modular architecture includes a clinical module for electrode labeling and localization, and a research module for automated data processing and electrode contact assignment. To ensure accessibility for users with limited programming and imaging expertise, we packaged iEEG‐recon in a containerized format that allows integration into clinical workflows. We propose a cloud‐based implementation of iEEG‐recon and test our pipeline on data from 132 patients at two epilepsy centers using retrospective and prospective cohorts. Results We used iEEG‐recon to accurately reconstruct electrodes in both electrocorticography and stereoelectroencephalography cases with a 30‐min running time per case (including semiautomatic electrode labeling and reconstruction). iEEG‐recon generates quality assurance reports and visualizations to support epilepsy surgery discussions. Reconstruction outputs from the clinical module were radiologically validated through pre‐ and postimplant T1‐MRI visual inspections. We also found that our use of ANTsPyNet deep learning‐based brain segmentation for electrode classification was consistent with the widely used FreeSurfer segmentations. Significance iEEG‐recon is a robust pipeline for automating reconstruction of iEEG electrodes and implantable devices on brain MRI, promoting fast data analysis and integration into clinical workflows. iEEG‐recon's accuracy, speed, and compatibility with cloud platforms make it a useful resource for epilepsy centers worldwide.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超模咕咕鸡完成签到,获得积分10
刚刚
Cheng应助zh5841314525采纳,获得10
刚刚
刚刚
韩丹丹完成签到 ,获得积分10
1秒前
2秒前
3秒前
一一发布了新的文献求助10
3秒前
文艺小馒头完成签到,获得积分10
4秒前
ding应助欢喜自中采纳,获得10
4秒前
祝愿完成签到,获得积分10
4秒前
自信白凡完成签到,获得积分10
5秒前
哈哈哈完成签到,获得积分10
5秒前
6秒前
LihuaLu0417发布了新的文献求助10
6秒前
无限冷之完成签到,获得积分10
7秒前
Suc关闭了Suc文献求助
8秒前
Zcy31098完成签到,获得积分20
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
祝愿发布了新的文献求助10
9秒前
10秒前
搜集达人应助Ywr采纳,获得10
10秒前
炝拌维C完成签到,获得积分10
14秒前
赘婿应助LihuaLu0417采纳,获得10
17秒前
友好的大米完成签到,获得积分10
17秒前
18秒前
xiayil完成签到 ,获得积分10
19秒前
orixero应助Lucky小M采纳,获得10
19秒前
晨曦呢完成签到 ,获得积分10
20秒前
解惑大师完成签到 ,获得积分10
21秒前
清璃完成签到 ,获得积分10
22秒前
zty完成签到 ,获得积分10
23秒前
23秒前
rowena完成签到,获得积分10
23秒前
LihuaLu0417完成签到,获得积分10
24秒前
24秒前
zybbb完成签到 ,获得积分10
25秒前
清沧炽魂完成签到,获得积分10
27秒前
27秒前
传奇3应助舒适的鹤轩采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539445
求助须知:如何正确求助?哪些是违规求助? 4626139
关于积分的说明 14598149
捐赠科研通 4567059
什么是DOI,文献DOI怎么找? 2503755
邀请新用户注册赠送积分活动 1481606
关于科研通互助平台的介绍 1453214