iEEG‐recon: A fast and scalable pipeline for accurate reconstruction of intracranial electrodes and implantable devices

计算机科学 工作流程 可扩展性 模块化设计 管道(软件) 癫痫外科 人工智能 神经影像学 癫痫 计算机视觉 神经科学 数据库 心理学 操作系统 程序设计语言
作者
Alfredo Lucas,Brittany H. Scheid,Akash R. Pattnaik,Ryan S. Gallagher,Marissa Mojena,Ashley Tranquille,Brian Prager,Ezequiel Gleichgerrcht,Ruxue Gong,Brian Litt,Kathryn A. Davis,Sandhitsu R. Das,Joel M. Stein,Nishant Sinha
出处
期刊:Epilepsia [Wiley]
卷期号:65 (3): 817-829 被引量:6
标识
DOI:10.1111/epi.17863
摘要

Abstract Objective Clinicians use intracranial electroencephalography (iEEG) in conjunction with noninvasive brain imaging to identify epileptic networks and target therapy for drug‐resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of “electrode reconstruction,” which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. We developed a standalone, modular pipeline that performs electrode reconstruction. We demonstrate our tool's compatibility with clinical and research workflows and its scalability on cloud platforms. Methods We created iEEG‐recon, a scalable electrode reconstruction pipeline for semiautomatic iEEG annotation, rapid image registration, and electrode assignment on brain magnetic resonance imaging (MRI). Its modular architecture includes a clinical module for electrode labeling and localization, and a research module for automated data processing and electrode contact assignment. To ensure accessibility for users with limited programming and imaging expertise, we packaged iEEG‐recon in a containerized format that allows integration into clinical workflows. We propose a cloud‐based implementation of iEEG‐recon and test our pipeline on data from 132 patients at two epilepsy centers using retrospective and prospective cohorts. Results We used iEEG‐recon to accurately reconstruct electrodes in both electrocorticography and stereoelectroencephalography cases with a 30‐min running time per case (including semiautomatic electrode labeling and reconstruction). iEEG‐recon generates quality assurance reports and visualizations to support epilepsy surgery discussions. Reconstruction outputs from the clinical module were radiologically validated through pre‐ and postimplant T1‐MRI visual inspections. We also found that our use of ANTsPyNet deep learning‐based brain segmentation for electrode classification was consistent with the widely used FreeSurfer segmentations. Significance iEEG‐recon is a robust pipeline for automating reconstruction of iEEG electrodes and implantable devices on brain MRI, promoting fast data analysis and integration into clinical workflows. iEEG‐recon's accuracy, speed, and compatibility with cloud platforms make it a useful resource for epilepsy centers worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞小骆驼完成签到,获得积分10
刚刚
刚刚
刚刚
科研通AI6应助学术废物采纳,获得10
刚刚
表里醉完成签到,获得积分10
1秒前
1秒前
hehe完成签到,获得积分10
1秒前
一问三不栀完成签到,获得积分10
1秒前
嘿嘿嘿嘿发布了新的文献求助10
1秒前
英俊的铭应助evaporator采纳,获得10
1秒前
曹冬子程完成签到,获得积分10
2秒前
Function完成签到,获得积分10
2秒前
一颗红葡萄完成签到 ,获得积分10
2秒前
病猫完成签到,获得积分10
3秒前
FashionBoy应助mirror采纳,获得10
3秒前
3秒前
子车茗应助guozizi采纳,获得30
3秒前
3秒前
慕青应助有魅力的含海采纳,获得10
3秒前
自由薯片完成签到,获得积分10
4秒前
草莓月亮完成签到,获得积分20
4秒前
wanci应助菲菲公主采纳,获得10
4秒前
huangtian205完成签到,获得积分20
5秒前
比莉爱历史完成签到,获得积分10
5秒前
传奇3应助小乖采纳,获得10
5秒前
表里醉发布了新的文献求助10
6秒前
所爱皆在完成签到 ,获得积分10
6秒前
6秒前
小5老师完成签到,获得积分10
6秒前
李爱国应助指北针采纳,获得10
6秒前
7秒前
luffy完成签到 ,获得积分10
7秒前
7秒前
我是老大应助优雅老六采纳,获得10
7秒前
7秒前
等等等等完成签到,获得积分10
7秒前
画大饼发布了新的文献求助10
7秒前
8秒前
123~!完成签到,获得积分10
8秒前
挖掘机完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257269
求助须知:如何正确求助?哪些是违规求助? 4419464
关于积分的说明 13756172
捐赠科研通 4292683
什么是DOI,文献DOI怎么找? 2355623
邀请新用户注册赠送积分活动 1352050
关于科研通互助平台的介绍 1312824