TIWMFLP: Two-Tier Interactive Weighted Matrix Factorization and Label Propagation Based on Similarity Matrix Fusion for Drug-Disease Association Prediction

相似性(几何) 矩阵分解 融合 基质(化学分析) 计算机科学 非负矩阵分解 因式分解 联想(心理学) 人工智能 药品 模式识别(心理学) 数学 计算生物学 医学 算法 药理学 化学 物理 生物 心理学 色谱法 哲学 量子力学 语言学 图像(数学) 特征向量 心理治疗师
作者
Tiyao Liu,Shudong Wang,Yuanyuan Zhang,Yunyin Li,Yingye Liu,Shiyuan Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (22): 8641-8654 被引量:7
标识
DOI:10.1021/acs.jcim.4c01589
摘要

Accurately identifying new therapeutic uses for drugs is crucial for advancing pharmaceutical research and development. Matrix factorization is often used in association prediction due to its simplicity and high interpretability. However, existing matrix factorization models do not enable real-time interaction between molecular feature matrices and similarity matrices, nor do they consider the geometric structure of the matrices. Additionally, efficiently integrating multisource data remains a significant challenge. To address these issues, we propose a two-tier interactive weighted matrix factorization and label propagation model based on similarity matrix fusion (TIWMFLP) to assist in personalized treatment. First, we calculate the Gaussian and Laplace kernel similarities for drugs and diseases using known drug-disease associations. We then introduce a new multisource similarity fusion method, called similarity matrix fusion (SMF), to integrate these drug/disease similarities. SMF not only considers the different contributions represented by each neighbor but also incorporates drug-disease association information to enhance the contextual topological relationships and potential features of each drug/disease node in the network. Second, we innovatively developed a two-tier interactive weighted matrix factorization (TIWMF) method to process three biological networks. This method realizes for the first time the real-time interaction between the drug/disease feature matrix and its similarity matrix, allowing for a better capture of the complex relationships between drugs and diseases. Additionally, the weighted matrix of the drug/disease similarity matrix is introduced to preserve the underlying structure of the similarity matrix. Finally, the label propagation algorithm makes predictions based on the three updated biological networks. Experimental outcomes reveal that TIWMFLP consistently surpasses state-of-the-art models on four drug-disease data sets, two small molecule-miRNA data sets, and one miRNA-disease data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuqizong123发布了新的文献求助10
1秒前
3秒前
沉默的凝荷完成签到,获得积分10
3秒前
闻疏完成签到,获得积分10
4秒前
小叶大王发布了新的文献求助10
4秒前
舒心储完成签到,获得积分10
4秒前
阿华发布了新的文献求助10
4秒前
dileibing完成签到,获得积分10
6秒前
小周完成签到,获得积分10
6秒前
守护完成签到,获得积分20
7秒前
dileibing发布了新的文献求助10
8秒前
没什么存在感完成签到,获得积分10
10秒前
嘻嘻完成签到,获得积分10
12秒前
liuqizong123完成签到,获得积分10
12秒前
狂野白梅完成签到,获得积分10
13秒前
M张完成签到,获得积分10
14秒前
ding应助啦啦啦啦啦采纳,获得10
14秒前
灰灰完成签到,获得积分10
14秒前
积极的中蓝完成签到,获得积分10
15秒前
周小浪完成签到,获得积分10
16秒前
kean1943完成签到,获得积分10
18秒前
xmhxpz完成签到,获得积分10
19秒前
轻松峻熙完成签到,获得积分10
19秒前
不会游泳的鱼完成签到,获得积分10
20秒前
健康的肺完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
脑洞疼应助DHVZA采纳,获得10
23秒前
激动的晓筠完成签到 ,获得积分10
26秒前
fff完成签到,获得积分10
27秒前
疯子不风完成签到,获得积分10
31秒前
福路完成签到 ,获得积分10
31秒前
儒雅的蜜粉完成签到,获得积分10
32秒前
Yinzixin完成签到,获得积分10
34秒前
34秒前
量子星尘发布了新的文献求助10
35秒前
高中生完成签到,获得积分10
35秒前
文艺的枫叶完成签到 ,获得积分10
36秒前
orixero应助Yinzixin采纳,获得10
38秒前
缓慢的煎蛋完成签到,获得积分10
38秒前
几许星河皓月完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044737
求助须知:如何正确求助?哪些是违规求助? 4274288
关于积分的说明 13323576
捐赠科研通 4088026
什么是DOI,文献DOI怎么找? 2236649
邀请新用户注册赠送积分活动 1244065
关于科研通互助平台的介绍 1172119