TIWMFLP: Two-Tier Interactive Weighted Matrix Factorization and Label Propagation Based on Similarity Matrix Fusion for Drug-Disease Association Prediction

相似性(几何) 矩阵分解 融合 基质(化学分析) 计算机科学 非负矩阵分解 因式分解 联想(心理学) 人工智能 药品 模式识别(心理学) 数学 计算生物学 医学 算法 药理学 化学 物理 生物 心理学 色谱法 语言学 特征向量 哲学 量子力学 图像(数学) 心理治疗师
作者
Tiyao Liu,Shudong Wang,Yuanyuan Zhang,Yunyin Li,Yingye Liu,Shiyuan Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (22): 8641-8654 被引量:3
标识
DOI:10.1021/acs.jcim.4c01589
摘要

Accurately identifying new therapeutic uses for drugs is crucial for advancing pharmaceutical research and development. Matrix factorization is often used in association prediction due to its simplicity and high interpretability. However, existing matrix factorization models do not enable real-time interaction between molecular feature matrices and similarity matrices, nor do they consider the geometric structure of the matrices. Additionally, efficiently integrating multisource data remains a significant challenge. To address these issues, we propose a two-tier interactive weighted matrix factorization and label propagation model based on similarity matrix fusion (TIWMFLP) to assist in personalized treatment. First, we calculate the Gaussian and Laplace kernel similarities for drugs and diseases using known drug-disease associations. We then introduce a new multisource similarity fusion method, called similarity matrix fusion (SMF), to integrate these drug/disease similarities. SMF not only considers the different contributions represented by each neighbor but also incorporates drug-disease association information to enhance the contextual topological relationships and potential features of each drug/disease node in the network. Second, we innovatively developed a two-tier interactive weighted matrix factorization (TIWMF) method to process three biological networks. This method realizes for the first time the real-time interaction between the drug/disease feature matrix and its similarity matrix, allowing for a better capture of the complex relationships between drugs and diseases. Additionally, the weighted matrix of the drug/disease similarity matrix is introduced to preserve the underlying structure of the similarity matrix. Finally, the label propagation algorithm makes predictions based on the three updated biological networks. Experimental outcomes reveal that TIWMFLP consistently surpasses state-of-the-art models on four drug-disease data sets, two small molecule-miRNA data sets, and one miRNA-disease data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DandanHan0916发布了新的文献求助150
1秒前
2秒前
兴奋采梦发布了新的文献求助10
2秒前
蘅皋发布了新的文献求助10
3秒前
勇敢且鲁班完成签到,获得积分10
4秒前
CodeCraft应助温柔的海安采纳,获得10
5秒前
舟遥遥发布了新的文献求助10
6秒前
7秒前
充电宝应助guard采纳,获得10
8秒前
科研通AI2S应助wos采纳,获得10
8秒前
都会完成签到 ,获得积分10
9秒前
如梦如画完成签到 ,获得积分10
9秒前
Lucas应助知性的觅露采纳,获得10
9秒前
Dritsw应助小野采纳,获得10
9秒前
9秒前
10秒前
挪威的森林完成签到,获得积分10
11秒前
外向孤容发布了新的文献求助10
11秒前
宋江他大表哥完成签到,获得积分10
11秒前
11秒前
12秒前
赘婿应助andy采纳,获得10
13秒前
健脊护柱完成签到 ,获得积分10
13秒前
保持好心情完成签到 ,获得积分10
14秒前
14秒前
15秒前
JF123_完成签到 ,获得积分10
15秒前
wu完成签到,获得积分10
16秒前
璐璐完成签到,获得积分10
16秒前
小方发布了新的文献求助10
16秒前
轻松盼望发布了新的文献求助10
17秒前
幽默滑板完成签到,获得积分10
18秒前
NONO发布了新的文献求助20
19秒前
FashionBoy应助繁多星采纳,获得10
20秒前
20秒前
22秒前
肉肉完成签到 ,获得积分10
22秒前
wos完成签到,获得积分10
22秒前
蘅皋完成签到,获得积分20
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278