TIWMFLP: Two-Tier Interactive Weighted Matrix Factorization and Label Propagation Based on Similarity Matrix Fusion for Drug-Disease Association Prediction

相似性(几何) 矩阵分解 融合 基质(化学分析) 计算机科学 非负矩阵分解 因式分解 联想(心理学) 人工智能 药品 模式识别(心理学) 数学 计算生物学 医学 算法 药理学 化学 物理 生物 心理学 色谱法 哲学 量子力学 语言学 图像(数学) 特征向量 心理治疗师
作者
Tiyao Liu,Shudong Wang,Yuanyuan Zhang,Yunyin Li,Yingye Liu,Shiyuan Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (22): 8641-8654 被引量:7
标识
DOI:10.1021/acs.jcim.4c01589
摘要

Accurately identifying new therapeutic uses for drugs is crucial for advancing pharmaceutical research and development. Matrix factorization is often used in association prediction due to its simplicity and high interpretability. However, existing matrix factorization models do not enable real-time interaction between molecular feature matrices and similarity matrices, nor do they consider the geometric structure of the matrices. Additionally, efficiently integrating multisource data remains a significant challenge. To address these issues, we propose a two-tier interactive weighted matrix factorization and label propagation model based on similarity matrix fusion (TIWMFLP) to assist in personalized treatment. First, we calculate the Gaussian and Laplace kernel similarities for drugs and diseases using known drug-disease associations. We then introduce a new multisource similarity fusion method, called similarity matrix fusion (SMF), to integrate these drug/disease similarities. SMF not only considers the different contributions represented by each neighbor but also incorporates drug-disease association information to enhance the contextual topological relationships and potential features of each drug/disease node in the network. Second, we innovatively developed a two-tier interactive weighted matrix factorization (TIWMF) method to process three biological networks. This method realizes for the first time the real-time interaction between the drug/disease feature matrix and its similarity matrix, allowing for a better capture of the complex relationships between drugs and diseases. Additionally, the weighted matrix of the drug/disease similarity matrix is introduced to preserve the underlying structure of the similarity matrix. Finally, the label propagation algorithm makes predictions based on the three updated biological networks. Experimental outcomes reveal that TIWMFLP consistently surpasses state-of-the-art models on four drug-disease data sets, two small molecule-miRNA data sets, and one miRNA-disease data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐豆芽发布了新的文献求助10
刚刚
西瓜太郎完成签到,获得积分20
刚刚
刚刚
雪白山蝶完成签到,获得积分10
1秒前
星辰大海应助舒适新梅采纳,获得10
1秒前
369发布了新的文献求助10
2秒前
Erich完成签到 ,获得积分10
2秒前
悦耳黑夜完成签到,获得积分10
2秒前
火星上的半梅完成签到,获得积分10
3秒前
科研通AI6应助翠瓜搞科研采纳,获得10
3秒前
3秒前
雪白山蝶发布了新的文献求助10
3秒前
陈军完成签到,获得积分0
4秒前
JY完成签到,获得积分10
4秒前
4秒前
jinling完成签到 ,获得积分10
5秒前
1223发布了新的文献求助10
6秒前
端庄毛巾发布了新的文献求助10
6秒前
6秒前
zhu发布了新的文献求助10
6秒前
6秒前
6秒前
珏珏子发布了新的文献求助30
7秒前
嘻嘻嘻完成签到,获得积分10
7秒前
ChuangyangLi发布了新的文献求助10
7秒前
mol完成签到 ,获得积分10
7秒前
Tian发布了新的文献求助10
8秒前
嘟嘟请让一让完成签到,获得积分10
9秒前
10秒前
wenlongliu完成签到,获得积分10
10秒前
aaashirz_发布了新的文献求助10
10秒前
11秒前
1223完成签到,获得积分10
11秒前
李爱国应助薛定谔的猫采纳,获得10
11秒前
Absinthe发布了新的文献求助10
11秒前
苦学僧完成签到,获得积分10
12秒前
12秒前
Nathan发布了新的文献求助10
12秒前
Hello应助火星上的半梅采纳,获得10
12秒前
王俊1314完成签到 ,获得积分10
13秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388179
求助须知:如何正确求助?哪些是违规求助? 4510159
关于积分的说明 14034562
捐赠科研通 4421062
什么是DOI,文献DOI怎么找? 2428561
邀请新用户注册赠送积分活动 1421212
关于科研通互助平台的介绍 1400459