TIWMFLP: Two-Tier Interactive Weighted Matrix Factorization and Label Propagation Based on Similarity Matrix Fusion for Drug-Disease Association Prediction

相似性(几何) 矩阵分解 融合 基质(化学分析) 计算机科学 非负矩阵分解 因式分解 联想(心理学) 人工智能 药品 模式识别(心理学) 数学 计算生物学 医学 算法 药理学 化学 物理 生物 心理学 色谱法 语言学 特征向量 哲学 量子力学 图像(数学) 心理治疗师
作者
Tiyao Liu,Shudong Wang,Yuanyuan Zhang,Yunyin Li,Yingye Liu,Shiyuan Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (22): 8641-8654 被引量:1
标识
DOI:10.1021/acs.jcim.4c01589
摘要

Accurately identifying new therapeutic uses for drugs is crucial for advancing pharmaceutical research and development. Matrix factorization is often used in association prediction due to its simplicity and high interpretability. However, existing matrix factorization models do not enable real-time interaction between molecular feature matrices and similarity matrices, nor do they consider the geometric structure of the matrices. Additionally, efficiently integrating multisource data remains a significant challenge. To address these issues, we propose a two-tier interactive weighted matrix factorization and label propagation model based on similarity matrix fusion (TIWMFLP) to assist in personalized treatment. First, we calculate the Gaussian and Laplace kernel similarities for drugs and diseases using known drug-disease associations. We then introduce a new multisource similarity fusion method, called similarity matrix fusion (SMF), to integrate these drug/disease similarities. SMF not only considers the different contributions represented by each neighbor but also incorporates drug-disease association information to enhance the contextual topological relationships and potential features of each drug/disease node in the network. Second, we innovatively developed a two-tier interactive weighted matrix factorization (TIWMF) method to process three biological networks. This method realizes for the first time the real-time interaction between the drug/disease feature matrix and its similarity matrix, allowing for a better capture of the complex relationships between drugs and diseases. Additionally, the weighted matrix of the drug/disease similarity matrix is introduced to preserve the underlying structure of the similarity matrix. Finally, the label propagation algorithm makes predictions based on the three updated biological networks. Experimental outcomes reveal that TIWMFLP consistently surpasses state-of-the-art models on four drug-disease data sets, two small molecule-miRNA data sets, and one miRNA-disease data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
安诺完成签到,获得积分10
3秒前
3秒前
小火车完成签到,获得积分10
5秒前
8秒前
8秒前
Lxy发布了新的文献求助10
9秒前
点点白帆完成签到,获得积分10
9秒前
9秒前
12秒前
12秒前
13秒前
orixero应助Lxy采纳,获得10
14秒前
双刀火鸡发布了新的文献求助30
14秒前
15秒前
Summer完成签到,获得积分10
15秒前
orixero应助吕佩昌采纳,获得10
15秒前
17秒前
iNk应助Tony12采纳,获得20
17秒前
pp发布了新的文献求助10
20秒前
乐多子发布了新的文献求助10
20秒前
请叫我风吹麦浪应助nana采纳,获得10
21秒前
Lucas应助Summer采纳,获得10
22秒前
22秒前
四喜丸子完成签到 ,获得积分10
22秒前
23秒前
24秒前
24秒前
谢显龙完成签到,获得积分10
24秒前
26秒前
GS完成签到,获得积分10
26秒前
Erin完成签到,获得积分10
28秒前
西北望发布了新的文献求助10
29秒前
29秒前
bob发布了新的文献求助10
29秒前
SciGPT应助科研通管家采纳,获得10
30秒前
子车茗应助科研通管家采纳,获得30
30秒前
30秒前
wanci应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433920
求助须知:如何正确求助?哪些是违规求助? 3031041
关于积分的说明 8940816
捐赠科研通 2719088
什么是DOI,文献DOI怎么找? 1491638
科研通“疑难数据库(出版商)”最低求助积分说明 689350
邀请新用户注册赠送积分活动 685511