Remaining Useful Life Prediction Method Based on Stacked Autoencoder and Generalized Wiener Process for Degrading Bearing

自编码 维纳过程 计算机科学 过程(计算) 主成分分析 人工智能 数据挖掘 不确定度量化 方位(导航) 机器学习 深度学习 数学 统计 操作系统
作者
Zhe Chen,Yonghua Li,Qi Gong,Denglong Wang,Xuejiao Yin
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad633f
摘要

Abstract Remaining Useful Life (RUL) prediction using deep learning networks primarily produces point estimates of RUL, but capturing the inherent uncertainty in RUL prediction is difficult. The use of the stochastic process approach can reflect the uncertainty in RUL predictions. However, the amount of data generated during equipment operation cannot be effectively utilized. This paper aims to propose an adaptive RUL prediction method tailored for extensive datasets and prediction uncertainty, effectively harnessing the strengths of deep learning methods in managing massive data and stochastic process techniques in quantifying uncertainties. RUL prediction method, based on Stacked Autoencoder (SAE) combined with Generalized Wiener Process, employs SAE to extract profound underlying features from the monitoring signals. Principal Component Analysis (PCA) is then used to select highly trending features as inputs. The output of PCA accurately reflects health status. A Generalized Wiener Process is used to construct a model for the evolution of the health indicators. The estimation values for the model parameters are determined using the Maximum Likelihood Estimation method. Furthermore, an adaptive update is performed based on Bayesian theory. Utilizing the sense of the first hitting time concept, the Probability Density Function for RUL prediction is derived accurately. Finally, the effectiveness and superiority of the proposed method is verified using numerical simulations and experimental studies of bearing degradation data. The method improves the life prediction accuracy while reducing the prediction uncertainty.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开心的寄灵完成签到 ,获得积分10
刚刚
缥缈伟宸完成签到,获得积分10
刚刚
刚刚
dyy123发布了新的文献求助10
刚刚
1秒前
1秒前
露露发布了新的文献求助10
1秒前
青藤完成签到,获得积分10
1秒前
Anna-crystal发布了新的文献求助10
1秒前
wanci应助Pang采纳,获得10
2秒前
科研狗发布了新的文献求助10
3秒前
3秒前
Madge完成签到,获得积分10
3秒前
3秒前
yyer发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
蔬菜狗狗发布了新的文献求助10
4秒前
4秒前
今后应助樂楽采纳,获得10
4秒前
fengmingyu发布了新的文献求助10
4秒前
小二郎应助清脆天空采纳,获得10
4秒前
可夫司机完成签到 ,获得积分10
5秒前
钟馗完成签到,获得积分10
5秒前
SciGPT应助提拉米草采纳,获得10
5秒前
5秒前
超级小刺猬完成签到 ,获得积分10
5秒前
NXBYFZX发布了新的文献求助10
6秒前
wushengdeyu发布了新的文献求助10
6秒前
Emma发布了新的文献求助30
6秒前
6秒前
Judy完成签到,获得积分10
6秒前
6秒前
慕青应助风中的奎采纳,获得10
6秒前
7秒前
7秒前
无情草莓完成签到,获得积分10
8秒前
yuwshuihen完成签到,获得积分10
8秒前
yxu完成签到,获得积分10
8秒前
Belinda完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524260
求助须知:如何正确求助?哪些是违规求助? 4614804
关于积分的说明 14544904
捐赠科研通 4552714
什么是DOI,文献DOI怎么找? 2494932
邀请新用户注册赠送积分活动 1475626
关于科研通互助平台的介绍 1447330