亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Probing Synergistic High-Order Interaction for Multi-modal Image Fusion

人工智能 计算机科学 图像融合 计算机视觉 情态动词 融合 图像(数学) 模式识别(心理学) 语言学 哲学 高分子化学 化学
作者
Man Zhou,Naishan Zheng,Xuanhua He,Danfeng Hong,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2024.3475485
摘要

Multi-modal image fusion aims to generate a fused image by integrating and distinguishing the cross-modality complementary information from multiple source images. While the cross-attention mechanism with global spatial interactions appears promising, it only captures second-order spatial interactions, neglecting higher-order interactions in both spatial and channel dimensions. This limitation hampers the exploitation of synergies between multi-modalities. To bridge this gap, we introduce a Synergistic High-order Interaction Paradigm (SHIP), designed to systematically investigate spatial fine-grained and global statistics collaborations between the multi-modal images across two fundamental dimensions: 1) Spatial dimension: we construct spatial fine-grained interactions through element-wise multiplication, mathematically equivalent to global interactions, and then foster high-order formats by iteratively aggregating and evolving complementary information, enhancing both efficiency and flexibility. 2) Channel dimension: expanding on channel interactions with first-order statistics (mean), we devise high-order channel interactions to facilitate the discernment of inter-dependencies between source images based on global statistics. We further introduce an enhanced version of the SHIP model, called SHIP++ that enhances the cross-modality information interaction representation by the cross-order attention evolving mechanism, cross-order information integration, and residual information memorizing mechanism. Harnessing high-order interactions significantly enhances our model's ability to exploit multi-modal synergies, leading in superior performance over state-of-the-art alternatives, as shown through comprehensive experiments across various benchmarks in two significant multi-modal image fusion tasks: pan-sharpening, and infrared and visible image fusion. The source code is publicly available at https://github.com/manman1995/HOIF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
拾柒完成签到 ,获得积分10
18秒前
Orange应助安静的沉鱼采纳,获得30
24秒前
追风完成签到,获得积分10
43秒前
46秒前
葱饼完成签到 ,获得积分10
1分钟前
red完成签到 ,获得积分10
1分钟前
慕青应助爱我嫉妒我采纳,获得10
1分钟前
爱我嫉妒我完成签到,获得积分20
1分钟前
1分钟前
贝儿发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
微笑发布了新的文献求助10
2分钟前
舒心豪英完成签到 ,获得积分10
2分钟前
搜集达人应助北海采纳,获得10
2分钟前
开放的大侠完成签到 ,获得积分10
2分钟前
田様应助心灵美的抽屉采纳,获得10
2分钟前
2分钟前
安静的沉鱼完成签到,获得积分10
3分钟前
北海发布了新的文献求助10
3分钟前
fairy完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
心灵美的抽屉完成签到,获得积分10
3分钟前
一一完成签到,获得积分10
3分钟前
小白菜完成签到,获得积分10
4分钟前
4分钟前
受伤雁荷完成签到,获得积分10
4分钟前
JamesPei应助贝儿采纳,获得10
4分钟前
4分钟前
谦让易烟发布了新的文献求助10
4分钟前
贝儿完成签到,获得积分10
5分钟前
大个应助谦让易烟采纳,获得10
5分钟前
chun发布了新的文献求助20
5分钟前
5分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248759
求助须知:如何正确求助?哪些是违规求助? 2892223
关于积分的说明 8270188
捐赠科研通 2560404
什么是DOI,文献DOI怎么找? 1388980
科研通“疑难数据库(出版商)”最低求助积分说明 650936
邀请新用户注册赠送积分活动 627850