Olink Proteomics for the Identification of Biomarkers for Early Diagnosis of Postmenopausal Osteoporosis

绝经后骨质疏松症 小桶 蛋白质组学 骨质疏松症 医学 定量蛋白质组学 生物信息学 内科学 接收机工作特性 生物 骨矿物 基因 基因本体论 基因表达 遗传学
作者
Jia Li,Xinwei Zang,Бо Лю,Shangqi Yin,Xiang Cheng,Wei Wang,Xiangyu Meng,Liyuan Chen,Shuai Lu,Jun Wu
出处
期刊:Journal of Proteome Research [American Chemical Society]
标识
DOI:10.1021/acs.jproteome.4c00470
摘要

This investigation aims to employ Olink proteomics in analyzing the distinct serum proteins associated with postmenopausal osteoporosis (PMOP) and identifying prognostic markers for early detection of PMOP via molecular mechanism research on postmenopausal osteoporosis. Postmenopausal women admitted to Beijing Jishuitan Hospital were randomly selected and categorized into three groups based on their dual-energy X-ray absorptiometry (DXA) T-scores: osteoporosis group (n = 24), osteopenia group (n = 20), and normal bone mass group (n = 16). Serum samples from all participants were collected for clinical and bone metabolism marker measurements. Olink proteomics was utilized to identify differentially expressed proteins (DEPs) that are highly associated with postmenopausal osteoporosis. The functional analysis of DEPs was performed using Gene Ontology and Kyto Encyclopedia Genes and Genomes (KEGG). The biological characteristics of these proteins and their correlation with PMOP were subsequently analyzed. ROC curve analysis was performed to identify potential biomarkers with the highest diagnostic accuracy for early stage PMOP. Through Olink proteomics, we identified five DEPs highly associated with PMOP, including two upregulated and three downregulated proteins. TWEAK and CDCP1 markers exhibited the highest area under the curve (0.8188 and 0.8031, respectively). TWEAK and CDCP1 have the potential to serve as biomarkers for early prediction of postmenopausal osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑傲江湖完成签到,获得积分10
刚刚
大慧慧发布了新的文献求助10
1秒前
pyc076发布了新的文献求助10
2秒前
慕青应助良药采纳,获得10
2秒前
耍酷的寄凡完成签到,获得积分10
3秒前
3秒前
快乐的七宝完成签到 ,获得积分10
3秒前
wzx完成签到,获得积分10
4秒前
乐风完成签到 ,获得积分10
5秒前
123456发布了新的文献求助10
5秒前
十一嘞完成签到,获得积分10
6秒前
无花果应助ounuo采纳,获得10
6秒前
落叶完成签到,获得积分10
7秒前
没事哒发布了新的文献求助10
8秒前
10秒前
11秒前
chen发布了新的文献求助10
11秒前
大个应助彦佳雪采纳,获得10
11秒前
Orange应助大慧慧采纳,获得10
12秒前
万能图书馆应助zqxu采纳,获得10
12秒前
快乐小恬完成签到 ,获得积分10
13秒前
14秒前
CCC应助保住头发为科研采纳,获得20
14秒前
17秒前
欧阳完成签到,获得积分10
18秒前
Carol_Wang完成签到,获得积分10
18秒前
xn发布了新的文献求助10
19秒前
Jun发布了新的文献求助10
20秒前
香蕉凌柏完成签到,获得积分10
20秒前
20秒前
大模型应助123456采纳,获得10
21秒前
21秒前
22秒前
称心的冥幽关注了科研通微信公众号
23秒前
23秒前
大壮完成签到,获得积分10
24秒前
rktrain2023发布了新的文献求助10
25秒前
传奇3应助研友_8y2G0L采纳,获得10
26秒前
27秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376