细胞内
内体
材料科学
生物物理学
纳米技术
透射电子显微镜
膜
生物医学工程
化学
细胞生物学
生物
医学
生物化学
作者
Xuelin Wang,Xuedong Li,Minghui Duan,Shaobo Shan,Xiyu Zhu,Yi Chai,Hongzhang Wang,Xuyang Sun,Lili Sheng,Guangchao Qing,Wei Rao,Liang Hu,Junge Chen,Liu Jing
出处
期刊:Matter
[Elsevier]
日期:2022-01-01
卷期号:5 (1): 219-236
被引量:35
标识
DOI:10.1016/j.matt.2021.11.006
摘要
Metallic shape transformable materials hold big promise for improved intracellular therapy. However, until now, there have been rather limited biomedical practices for such materials, which is mainly attributed to their inherent uncontrolled morphological transformation, non-selective destruction, and difficult metabolization. Here, Ga-based liquid metal is found to exhibit remarkable transformation from sphere shape to cactus-like structure in micro-scale under freezing. Particularly, only cell membrane-encapsulated Ga particles (Ga/MPs) display dramatic shape variation in cooling under cryo-transmission electron microscopy (cryo-TEM). Following that, cryo-triggered Ga/MPs transformers are designed for effective endosomal escape via a physical mechanical strategy to disrupt the endosomal membrane, which leads to highly efficient cancer cell killing. Ga/MPs exhibit significant tumor growth inhibition and prolonged survival time according to the collaborative efficacy of cryoablation and endosomal escape mechanism, as well as high-resolution in vivo computed tomography (CT) imaging. This study opens a versatile strategy based on Ga particle transformer to assist high-performance precise intracellular therapy in future tumor therapeutics.
科研通智能强力驱动
Strongly Powered by AbleSci AI