Building a new machine learning-based model to estimate county-level climatic yield variation for maize in Northeast China

粮食安全 随机森林 产量(工程) 人工神经网络 纬度 作物产量 环境科学 支持向量机 气候变化 统计 农业工程 自然地理学 地理 机器学习 数学 计算机科学 农学 农业 生态学 工程类 材料科学 考古 大地测量学 冶金 生物
作者
Manyao Li,Jin Zhao,Xiaoguang Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:191: 106557-106557 被引量:23
标识
DOI:10.1016/j.compag.2021.106557
摘要

China is one of the top maize exporting countries in the world. In China, maize is the most important staple food crop, and Northeast China is one of the main maize-growing regions. Regional maize production in Northeast China is critical for national or even global food security. In order to take preventive measures in combating the potential impacts of climate change on maize yield, it is imperative to evaluate historical climatic maize yield variation at finer scales in Northeast China. Previous scholars have achieved some good results in crop yield projection by using machine learning methods. However, climatic crop yield variation has rarely been addressed by considering the geographical factors (i.e., elevation, latitude, and longitude) of the meteorological stations used. In this study, based on 18 climatic elements during the period of 2003–2016, we compared the performance of three machine leaching methods, including neural network, support vector machine, and random forest, with multiple linear regression in evaluating climatic maize yield variation. Overall, machine learning methods are superior to traditional multilinear regression, particularly the neural network (with an R2 of 0.43 and an annual average MAE of 1.22 ton·ha−1). We selected the best machine learning methods and used the Bayesian method to integrate them as a new model. The Bayesian method reduced the evaluation error (i.e., RMSE and MAE) and improved the estimation accuracy. By addressing the uncertainty in the meteorological stations, our newly built model could be extended to other regions for evaluating climatic crop yield variation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大胆的八宝粥完成签到,获得积分10
2秒前
归尘发布了新的文献求助10
3秒前
smallcc完成签到,获得积分10
3秒前
4秒前
Owen应助大胆的八宝粥采纳,获得50
4秒前
7秒前
安详的沛菡完成签到,获得积分10
10秒前
gh完成签到,获得积分10
13秒前
wanci应助pp采纳,获得10
15秒前
victor完成签到,获得积分10
17秒前
香蕉觅云应助秀丽菠萝采纳,获得10
21秒前
饱满烙完成签到 ,获得积分10
21秒前
22秒前
cqsjy完成签到,获得积分10
23秒前
24秒前
25秒前
Brave发布了新的文献求助10
27秒前
维护完成签到 ,获得积分10
29秒前
如意绾绾发布了新的文献求助10
29秒前
30秒前
Colossus发布了新的文献求助10
32秒前
李健的小迷弟应助milan001采纳,获得10
33秒前
34秒前
35秒前
爆米花应助JCyang采纳,获得10
35秒前
Zhy完成签到,获得积分10
37秒前
牧羊完成签到 ,获得积分10
37秒前
sandwich完成签到 ,获得积分10
38秒前
于于于发布了新的文献求助10
41秒前
44秒前
如意绾绾完成签到,获得积分20
44秒前
47秒前
48秒前
50秒前
标致青荷完成签到,获得积分10
51秒前
51秒前
55秒前
55秒前
55秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738421
求助须知:如何正确求助?哪些是违规求助? 3281876
关于积分的说明 10026769
捐赠科研通 2998687
什么是DOI,文献DOI怎么找? 1645397
邀请新用户注册赠送积分活动 782757
科研通“疑难数据库(出版商)”最低求助积分说明 749911