ConViT: improving vision transformers with soft convolutional inductive biases*

计算机科学 地点 归纳偏置 人工智能 卷积神经网络 变压器 机器学习 模式识别(心理学) 多任务学习 任务(项目管理) 管理 电压 经济 哲学 物理 量子力学 语言学
作者
Stéphane d’Ascoli,Hugo Touvron,Matthew L. Leavitt,Ari S. Morcos,Giulio Biroli,Levent Sagun
出处
期刊:Journal of Statistical Mechanics: Theory and Experiment [Institute of Physics]
卷期号:2022 (11): 114005-114005 被引量:395
标识
DOI:10.1088/1742-5468/ac9830
摘要

Abstract Convolutional architectures have proven to be extremely successful for vision tasks. Their hard inductive biases enable sample-efficient learning, but come at the cost of a potentially lower performance ceiling. Vision transformers rely on more flexible self-attention layers, and have recently outperformed CNNs for image classification. However, they require costly pre-training on large external datasets or distillation from pre-trained convolutional networks. In this paper, we ask the following question: is it possible to combine the strengths of these two architectures while avoiding their respective limitations? To this end, we introduce gated positional self-attention (GPSA), a form of positional self-attention which can be equipped with a ‘soft’ convolutional inductive bias. We initialize the GPSA layers to mimic the locality of convolutional layers, then give each attention head the freedom to escape locality by adjusting a gating parameter regulating the attention paid to position versus content information. The resulting convolutional-like ViT architecture, ConViT , outperforms the DeiT (Touvron et al 2020 arXiv: 2012.12877 ) on ImageNet, while offering a much improved sample efficiency. We further investigate the role of locality in learning by first quantifying how it is encouraged in vanilla self-attention layers, then analyzing how it has escaped in GPSA layers. We conclude by presenting various ablations to better understand the success of the ConViT. Our code and models are released publicly at https://github.com/facebookresearch/convit .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
丝丝完成签到,获得积分10
2秒前
Hello应助优雅的白山采纳,获得10
3秒前
西西完成签到,获得积分10
3秒前
kaia完成签到,获得积分10
3秒前
joyce930728发布了新的文献求助30
3秒前
4秒前
传奇3应助3dyf采纳,获得10
4秒前
4秒前
路瑶瑶完成签到,获得积分10
5秒前
文舒完成签到,获得积分10
5秒前
5秒前
以舟发布了新的文献求助10
6秒前
7秒前
香蕉觅云应助fpy采纳,获得10
7秒前
鲤鱼问雁完成签到,获得积分10
7秒前
阿玉发布了新的文献求助10
7秒前
好好学习完成签到,获得积分10
8秒前
8秒前
o10发布了新的文献求助10
9秒前
加油加油发布了新的文献求助10
9秒前
若雨凌风应助咯咯咯采纳,获得20
10秒前
10秒前
万能图书馆应助hx采纳,获得10
11秒前
饱满的凡儿完成签到,获得积分10
12秒前
wei完成签到,获得积分10
12秒前
以舟完成签到,获得积分10
12秒前
搜集达人应助Gezelligheid.采纳,获得10
12秒前
捉一只小鱼完成签到,获得积分10
13秒前
sweety0721完成签到,获得积分10
13秒前
wanye完成签到,获得积分10
13秒前
13秒前
syvshc完成签到,获得积分0
13秒前
深藏blue完成签到,获得积分10
14秒前
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011501
求助须知:如何正确求助?哪些是违规求助? 3551133
关于积分的说明 11307791
捐赠科研通 3285391
什么是DOI,文献DOI怎么找? 1811040
邀请新用户注册赠送积分活动 886767
科研通“疑难数据库(出版商)”最低求助积分说明 811636