材料科学
电化学
铋
阳极
离子运输机
析氧
钠
空位缺陷
电极
氧气输送
化学物理
化学工程
离子
氧气
纳米技术
化学
结晶学
物理化学
有机化学
冶金
工程类
作者
Jun Mei,Tiantian Wang,Dongchen Qi,Jianjun Liu,Ting Liao,Yusuke Yamauchi,Ziqi Sun
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-08-06
卷期号:15 (8): 13604-13615
被引量:42
标识
DOI:10.1021/acsnano.1c04479
摘要
Layered sodium titanates (NTO), one of the most promising anode materials for advanced sodium-ion batteries (SIBs), feature high theoretical capacity and no serious safety concerns. The pristine NTO electrode, however, has unfavorable Na+ transport kinetics, due to the dominant two-dimensional (2D) Na-ion transport channels within the crystal along the low energy barrier octahedron layers, which impedes the practical application of this class of potential materials. Herein, an interesting concept of opening three-dimensional (3D) fast ion transport channels within the intrinsic NTO frameworks is proposed to enhance the electrochemical performance through a combination of oxygen vacancy generation and cation substitution strategies, by which the interlayer spacing of the NTO frameworks is expanded for fast 3D Na-ion transport. It is evidenced that the oxygen-deficient and bismuth-substituted HBNTO (BixNa2-xTi3Oy, 0 < x < 2, 0 < y < 7, HBNTO) exhibits obvious enhancements on the reversible capacity (∼145% enhancement at 20 mAh g-1 compared with NTO), the rate capability (∼200% enhancement at 500 mAh g-1 compared with NTO), and the cycling stability (∼210% enhancement of retention capacity after 150 cycles at 20 mAh g-1 compared with NTO). The molecular dynamic simulations and theoretical calculations demonstrate that the enhanced performance of HBNTO is contributed by the multiplied sodium diffusion pathways and the increased ion migration rates with the successful opening of 3D internal ion transport channels. This work demonstrates the effectiveness of the strategies in opening the 3D intercrystal ion transport channels for boosting the electrochemical performance of SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI