Compass: Towards Better Causal Analysis of Urban Time Series

因果关系(物理学) 计算机科学 视觉分析 格兰杰因果关系 可视化 虚假关系 因果结构 因果模型 时间序列 指南针 图形 人工智能 机器学习 计量经济学 数据科学 数据挖掘 理论计算机科学 地理 数学 统计 物理 量子力学 地图学
作者
Zikun Deng,Di Weng,Xiao Xie,Jie Bao,Yu Zheng,Mingliang Xu,Wei Chen,Yingcai Wu
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 1051-1061 被引量:16
标识
DOI:10.1109/tvcg.2021.3114875
摘要

The spatial time series generated by city sensors allow us to observe urban phenomena like environmental pollution and traffic congestion at an unprecedented scale. However, recovering causal relations from these observations to explain the sources of urban phenomena remains a challenging task because these causal relations tend to be time-varying and demand proper time series partitioning for effective analyses. The prior approaches extract one causal graph given long-time observations, which cannot be directly applied to capturing, interpreting, and validating dynamic urban causality. This paper presents Compass, a novel visual analytics approach for in-depth analyses of the dynamic causality in urban time series. To develop Compass, we identify and address three challenges: detecting urban causality, interpreting dynamic causal relations, and unveiling suspicious causal relations. First, multiple causal graphs over time among urban time series are obtained with a causal detection framework extended from the Granger causality test. Then, a dynamic causal graph visualization is designed to reveal the time-varying causal relations across these causal graphs and facilitate the exploration of the graphs along the time. Finally, a tailored multi-dimensional visualization is developed to support the identification of spurious causal relations, thereby improving the reliability of causal analyses. The effectiveness of Compass is evaluated with two case studies conducted on the real-world urban datasets, including the air pollution and traffic speed datasets, and positive feedback was received from domain experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦麦完成签到,获得积分10
刚刚
forever完成签到,获得积分10
刚刚
刚刚
李建勋应助独特的翠芙采纳,获得10
1秒前
jin完成签到,获得积分10
1秒前
桐桐发布了新的文献求助40
1秒前
1秒前
小黑马发布了新的文献求助10
1秒前
1秒前
迷人的冥完成签到,获得积分10
1秒前
xiaozang完成签到,获得积分10
2秒前
2秒前
2秒前
owlhealth发布了新的文献求助10
2秒前
5476发布了新的文献求助10
3秒前
12333完成签到,获得积分10
3秒前
隐形白开水完成签到,获得积分10
3秒前
SHIMMER应助研究啥采纳,获得10
4秒前
大个应助Joshua采纳,获得10
4秒前
虚幻盼晴发布了新的文献求助10
4秒前
Owen应助cc采纳,获得10
4秒前
leiiiiiiii发布了新的文献求助10
5秒前
5秒前
newgeno2003发布了新的文献求助10
6秒前
6秒前
西扬发布了新的文献求助10
6秒前
tu豆完成签到,获得积分10
6秒前
HZN完成签到,获得积分20
6秒前
7秒前
文哲发布了新的文献求助10
7秒前
8秒前
小二郎应助owlhealth采纳,获得10
9秒前
gdgd完成签到,获得积分10
9秒前
JuTou完成签到,获得积分10
9秒前
科研通AI5应助朴实忆安采纳,获得10
9秒前
独特的翠芙完成签到,获得积分10
10秒前
自觉的曼梅完成签到,获得积分10
10秒前
小芭乐发布了新的文献求助10
10秒前
11秒前
QL发布了新的文献求助10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774068
求助须知:如何正确求助?哪些是违规求助? 3319696
关于积分的说明 10196583
捐赠科研通 3034330
什么是DOI,文献DOI怎么找? 1664956
邀请新用户注册赠送积分活动 796461
科研通“疑难数据库(出版商)”最低求助积分说明 757475