亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep reinforcement learning based path stretch vector resolution in dense traffic with uncertainties

强化学习 计算机科学 冲突解决 空中交通管制 代表(政治) 人工智能 过程(计算) 机器学习 功能(生物学) 集合(抽象数据类型) 运筹学 工程类 操作系统 法学 程序设计语言 航空航天工程 政治 生物 进化生物学 政治学
作者
Duc-Thinh Pham,P. Tran,Sameer Alam,Vu Duong,Daniel Delahaye
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:135: 103463-103463 被引量:20
标识
DOI:10.1016/j.trc.2021.103463
摘要

With the continuous growth in the air transportation demand, air traffic controllers will have to handle increased traffic and consequently, more potential conflicts. This gives rise to the need for conflict resolution advisory tools that can perform well in high-density traffic scenarios given a noisy environment. Unlike model-based approaches, learning-based approaches can take advantage of historical traffic data and flexibly encapsulate environmental uncertainty. In this study, we propose a reinforcement learning approach that is capable of resolving conflicts, in the presence of traffic and inherent uncertainties in conflict resolution maneuvers, without the need for prior knowledge about a set of rules mapping from conflict scenarios to expected actions. The conflict resolution task is formulated as a decision-making problem in a large and complex action space. The research also includes the development of a learning environment, scenario state representation, reward function, and a reinforcement learning algorithm inspired from Q-learning and Deep Deterministic Policy Gradient algorithms. The proposed algorithm, with two stages decision-making process, is used to train an agent that can serves as an advisory tool for air traffic controllers in resolving air traffic conflicts where it can learn from historical data by evolving overtime. Our findings show that the proposed model gives the agent the capability to suggest high quality conflict resolutions under different environmental conditions. It outperforms two baseline algorithms. The trained model has high performance under low uncertainty level (success rate ≥95% ) and medium uncertainty level (success rate ≥87%) with high traffic density. The detailed analysis of different impact factors such as environment’s uncertainty and traffic density on learning performance are investigated and discussed. The environment’s uncertainty is the most important factor which affects the performance. Moreover, the combination of high-density traffic and high uncertainty will be the challenge for any learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KYT完成签到 ,获得积分10
43秒前
44秒前
庄严发布了新的文献求助10
50秒前
我是老大应助科研通管家采纳,获得10
56秒前
FashionBoy应助傲娇的曼香采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
JJBOND发布了新的文献求助10
2分钟前
2分钟前
2分钟前
JJBOND发布了新的文献求助10
2分钟前
勤恳八宝粥完成签到 ,获得积分10
2分钟前
傲娇的曼香完成签到,获得积分10
2分钟前
Zzoevy完成签到 ,获得积分10
2分钟前
2分钟前
asdfqwer应助科研通管家采纳,获得10
2分钟前
asdfqwer应助科研通管家采纳,获得10
2分钟前
asdfqwer应助科研通管家采纳,获得10
2分钟前
asdfqwer应助科研通管家采纳,获得10
2分钟前
Crisp完成签到 ,获得积分10
4分钟前
6分钟前
永远发布了新的文献求助10
6分钟前
玛琳卡迪马完成签到 ,获得积分10
6分钟前
萨尔莫斯完成签到,获得积分10
6分钟前
zht完成签到,获得积分10
7分钟前
kevin完成签到 ,获得积分10
7分钟前
8分钟前
hwx发布了新的文献求助30
8分钟前
8分钟前
江小姜发布了新的文献求助10
9分钟前
江小姜完成签到,获得积分20
10分钟前
貔貅完成签到 ,获得积分10
10分钟前
赘婿应助杜琦采纳,获得10
10分钟前
10分钟前
10分钟前
懒洋洋完成签到,获得积分10
10分钟前
杜琦发布了新的文献求助10
10分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845355
求助须知:如何正确求助?哪些是违规求助? 6201719
关于积分的说明 15616386
捐赠科研通 4962184
什么是DOI,文献DOI怎么找? 2675323
邀请新用户注册赠送积分活动 1620073
关于科研通互助平台的介绍 1575372