Deep reinforcement learning based path stretch vector resolution in dense traffic with uncertainties

强化学习 计算机科学 冲突解决 空中交通管制 代表(政治) 人工智能 过程(计算) 机器学习 功能(生物学) 集合(抽象数据类型) 运筹学 工程类 操作系统 法学 程序设计语言 航空航天工程 政治 生物 进化生物学 政治学
作者
Duc-Thinh Pham,P. Tran,Sameer Alam,Vu Duong,Daniel Delahaye
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:135: 103463-103463 被引量:20
标识
DOI:10.1016/j.trc.2021.103463
摘要

With the continuous growth in the air transportation demand, air traffic controllers will have to handle increased traffic and consequently, more potential conflicts. This gives rise to the need for conflict resolution advisory tools that can perform well in high-density traffic scenarios given a noisy environment. Unlike model-based approaches, learning-based approaches can take advantage of historical traffic data and flexibly encapsulate environmental uncertainty. In this study, we propose a reinforcement learning approach that is capable of resolving conflicts, in the presence of traffic and inherent uncertainties in conflict resolution maneuvers, without the need for prior knowledge about a set of rules mapping from conflict scenarios to expected actions. The conflict resolution task is formulated as a decision-making problem in a large and complex action space. The research also includes the development of a learning environment, scenario state representation, reward function, and a reinforcement learning algorithm inspired from Q-learning and Deep Deterministic Policy Gradient algorithms. The proposed algorithm, with two stages decision-making process, is used to train an agent that can serves as an advisory tool for air traffic controllers in resolving air traffic conflicts where it can learn from historical data by evolving overtime. Our findings show that the proposed model gives the agent the capability to suggest high quality conflict resolutions under different environmental conditions. It outperforms two baseline algorithms. The trained model has high performance under low uncertainty level (success rate ≥95% ) and medium uncertainty level (success rate ≥87%) with high traffic density. The detailed analysis of different impact factors such as environment’s uncertainty and traffic density on learning performance are investigated and discussed. The environment’s uncertainty is the most important factor which affects the performance. Moreover, the combination of high-density traffic and high uncertainty will be the challenge for any learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助starry采纳,获得10
刚刚
独特天问完成签到,获得积分10
1秒前
科目三应助你好啊采纳,获得10
2秒前
霍小美发布了新的文献求助10
6秒前
jiezzz完成签到,获得积分10
13秒前
目闭皆影完成签到,获得积分10
13秒前
16秒前
华仔应助霍小美采纳,获得10
17秒前
xuan完成签到,获得积分10
17秒前
充电宝应助surain采纳,获得10
21秒前
王旭智完成签到,获得积分10
21秒前
22秒前
姜建正发布了新的文献求助10
23秒前
Xtals应助寒桥采纳,获得10
24秒前
26秒前
khh发布了新的文献求助10
27秒前
布熙哆发布了新的文献求助20
30秒前
乐乐应助研友_ndDGVn采纳,获得10
33秒前
34秒前
Muller完成签到,获得积分10
36秒前
36秒前
好样的完成签到,获得积分10
37秒前
linuo发布了新的文献求助10
37秒前
过冷风完成签到,获得积分10
37秒前
嗯哼完成签到,获得积分10
38秒前
dpy4462发布了新的文献求助10
38秒前
hexiqin发布了新的文献求助10
39秒前
小吉发布了新的文献求助10
41秒前
栗子完成签到,获得积分10
43秒前
麻薯头头发布了新的文献求助10
45秒前
45秒前
dpy4462完成签到,获得积分10
46秒前
bkagyin应助hexiqin采纳,获得10
46秒前
大福发布了新的文献求助10
47秒前
48秒前
minima1998发布了新的文献求助10
50秒前
51秒前
加菲丰丰应助科研通管家采纳,获得10
51秒前
耀学菜菜应助科研通管家采纳,获得10
52秒前
爆米花应助科研通管家采纳,获得10
52秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137664
求助须知:如何正确求助?哪些是违规求助? 2788576
关于积分的说明 7787679
捐赠科研通 2444950
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023