清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep reinforcement learning based path stretch vector resolution in dense traffic with uncertainties

强化学习 计算机科学 冲突解决 空中交通管制 代表(政治) 人工智能 过程(计算) 机器学习 功能(生物学) 集合(抽象数据类型) 运筹学 工程类 进化生物学 政治 政治学 法学 生物 航空航天工程 操作系统 程序设计语言
作者
Duc-Thinh Pham,P. Tran,Sameer Alam,Vu Duong,Daniel Delahaye
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:135: 103463-103463 被引量:20
标识
DOI:10.1016/j.trc.2021.103463
摘要

With the continuous growth in the air transportation demand, air traffic controllers will have to handle increased traffic and consequently, more potential conflicts. This gives rise to the need for conflict resolution advisory tools that can perform well in high-density traffic scenarios given a noisy environment. Unlike model-based approaches, learning-based approaches can take advantage of historical traffic data and flexibly encapsulate environmental uncertainty. In this study, we propose a reinforcement learning approach that is capable of resolving conflicts, in the presence of traffic and inherent uncertainties in conflict resolution maneuvers, without the need for prior knowledge about a set of rules mapping from conflict scenarios to expected actions. The conflict resolution task is formulated as a decision-making problem in a large and complex action space. The research also includes the development of a learning environment, scenario state representation, reward function, and a reinforcement learning algorithm inspired from Q-learning and Deep Deterministic Policy Gradient algorithms. The proposed algorithm, with two stages decision-making process, is used to train an agent that can serves as an advisory tool for air traffic controllers in resolving air traffic conflicts where it can learn from historical data by evolving overtime. Our findings show that the proposed model gives the agent the capability to suggest high quality conflict resolutions under different environmental conditions. It outperforms two baseline algorithms. The trained model has high performance under low uncertainty level (success rate ≥95% ) and medium uncertainty level (success rate ≥87%) with high traffic density. The detailed analysis of different impact factors such as environment’s uncertainty and traffic density on learning performance are investigated and discussed. The environment’s uncertainty is the most important factor which affects the performance. Moreover, the combination of high-density traffic and high uncertainty will be the challenge for any learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
Drwang发布了新的文献求助10
9秒前
研友_VZG7GZ应助Drwang采纳,获得10
22秒前
31秒前
量子星尘发布了新的文献求助10
35秒前
方白秋完成签到,获得积分10
48秒前
1分钟前
Drwang发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xuchaoqun完成签到 ,获得积分10
2分钟前
郭伟完成签到,获得积分10
2分钟前
2分钟前
张琦完成签到 ,获得积分10
2分钟前
chichenglin发布了新的文献求助10
2分钟前
gszy1975完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
if奖完成签到,获得积分10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
widesky777完成签到 ,获得积分0
4分钟前
JamesPei应助着急的松采纳,获得10
4分钟前
2520完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
碳土不凡完成签到 ,获得积分10
4分钟前
qiuqiu发布了新的文献求助10
5分钟前
nojego完成签到,获得积分10
5分钟前
冰凌心恋完成签到,获得积分10
5分钟前
qiuqiu完成签到 ,获得积分10
5分钟前
大医仁心完成签到 ,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
5分钟前
张张发布了新的文献求助10
6分钟前
小新小新完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
CipherSage应助张张采纳,获得10
6分钟前
风中不斜完成签到 ,获得积分20
6分钟前
7分钟前
7分钟前
oldcat96发布了新的文献求助10
7分钟前
所所应助oldcat96采纳,获得10
7分钟前
安琪琪完成签到 ,获得积分10
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008397
求助须知:如何正确求助?哪些是违规求助? 3548131
关于积分的说明 11298711
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811209