Deep reinforcement learning based path stretch vector resolution in dense traffic with uncertainties

强化学习 计算机科学 冲突解决 空中交通管制 代表(政治) 人工智能 过程(计算) 机器学习 功能(生物学) 集合(抽象数据类型) 运筹学 工程类 操作系统 法学 程序设计语言 航空航天工程 政治 生物 进化生物学 政治学
作者
Duc-Thinh Pham,P. Tran,Sameer Alam,Vu Duong,Daniel Delahaye
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:135: 103463-103463 被引量:20
标识
DOI:10.1016/j.trc.2021.103463
摘要

With the continuous growth in the air transportation demand, air traffic controllers will have to handle increased traffic and consequently, more potential conflicts. This gives rise to the need for conflict resolution advisory tools that can perform well in high-density traffic scenarios given a noisy environment. Unlike model-based approaches, learning-based approaches can take advantage of historical traffic data and flexibly encapsulate environmental uncertainty. In this study, we propose a reinforcement learning approach that is capable of resolving conflicts, in the presence of traffic and inherent uncertainties in conflict resolution maneuvers, without the need for prior knowledge about a set of rules mapping from conflict scenarios to expected actions. The conflict resolution task is formulated as a decision-making problem in a large and complex action space. The research also includes the development of a learning environment, scenario state representation, reward function, and a reinforcement learning algorithm inspired from Q-learning and Deep Deterministic Policy Gradient algorithms. The proposed algorithm, with two stages decision-making process, is used to train an agent that can serves as an advisory tool for air traffic controllers in resolving air traffic conflicts where it can learn from historical data by evolving overtime. Our findings show that the proposed model gives the agent the capability to suggest high quality conflict resolutions under different environmental conditions. It outperforms two baseline algorithms. The trained model has high performance under low uncertainty level (success rate ≥95% ) and medium uncertainty level (success rate ≥87%) with high traffic density. The detailed analysis of different impact factors such as environment’s uncertainty and traffic density on learning performance are investigated and discussed. The environment’s uncertainty is the most important factor which affects the performance. Moreover, the combination of high-density traffic and high uncertainty will be the challenge for any learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sicie完成签到,获得积分10
2秒前
2秒前
希望天下0贩的0应助justin采纳,获得10
3秒前
轻松土豆完成签到,获得积分10
3秒前
hrbbdhr应助Ann采纳,获得20
3秒前
李金文发布了新的文献求助10
3秒前
眯眯眼的世界完成签到,获得积分10
3秒前
贾明灵发布了新的文献求助10
4秒前
4秒前
清爽白开水完成签到 ,获得积分10
5秒前
丁莞发布了新的文献求助10
5秒前
Mmmmarys完成签到,获得积分10
6秒前
土豪的严青完成签到,获得积分10
6秒前
淡淡夜梦关注了科研通微信公众号
7秒前
单薄语山发布了新的文献求助10
8秒前
浮游应助小田儿采纳,获得10
8秒前
ttm发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助动听的半莲采纳,获得10
10秒前
万能图书馆应助哈哈采纳,获得10
11秒前
11秒前
肝不动的牛马完成签到,获得积分10
13秒前
Ilan发布了新的文献求助10
14秒前
花酒发布了新的文献求助10
14秒前
15秒前
小马甲应助xin采纳,获得10
16秒前
16秒前
16秒前
高贵的馒头完成签到,获得积分10
17秒前
不舍天真完成签到,获得积分10
17秒前
wentong完成签到,获得积分10
17秒前
星河清梦发布了新的文献求助30
20秒前
情怀应助zy采纳,获得10
20秒前
21秒前
21秒前
21秒前
22秒前
changping应助花酒采纳,获得10
22秒前
zhangxq关注了科研通微信公众号
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218912
求助须知:如何正确求助?哪些是违规求助? 4392767
关于积分的说明 13677175
捐赠科研通 4255477
什么是DOI,文献DOI怎么找? 2334980
邀请新用户注册赠送积分活动 1332572
关于科研通互助平台的介绍 1286834