发芽
生物
非生物成分
下层林
植物
辐照度
雨林
热带雨林
生态学
天蓬
量子力学
物理
作者
Amanda Silva da Rosa Carvalho,L. G. de Andrade,Antônio Carlos Silva de Andrade
出处
期刊:Plant Biology
[Wiley]
日期:2021-09-16
卷期号:23 (6): 981-991
被引量:4
摘要
The coexistence of plant species in tropical rainforests is related to specific abiotic resources, varying according to the occurrence microhabitat of each species. Light quality is the main abiotic factor influencing germination of small seeds; however, studies often do not discriminate its effect from that of light irradiance. This study compared specific requirements for seed germination of ten small-seeded species, with restricted occurrence in only one of three contrasting microhabitats: forest understorey, edge of clearings and open areas. Laboratory experiments were carried out to test temperature regime (constant or fluctuating), light quality (R:FR) and light irradiance (PAR), which reproduce high and low conditions commonly found in the microhabitats. Seed germination of all species occurred between 20 and 30 °C, only seeds of open area species were able to germinate at 35 °C and no species required alternating temperatures to germinate. Irrespective of species and microhabitat, a decrease in the R:FR reduced the germination percentage; however, there were differences in the capacity to germinate at low R:FR. The values of R:FR50% were higher for open area and edge species (0.441-0.345) than for understorey species (0.181-0.109), with few exceptions. For all species and most of the tests, germination was not influenced by PAR. Light quality is the most important light signal for germination of small seeds; irradiance has little effect. Our results suggest two distinct patterns of germination for small-seeded species: open area and edge species are light-demanding and require high R:FR to germinate, while understorey species are shade-tolerant and germinate at low R:FR. These differences are responsible for distinct microhabitat occurrence and help to explain the coexistence of species in tropical forests.
科研通智能强力驱动
Strongly Powered by AbleSci AI