A Convolutional Neural Network Based Approach for Computational Fluid Dynamics

计算流体力学 流体力学 格子Boltzmann方法 计算机科学 空气动力学 卷积神经网络 边值问题 守恒定律 计算科学 人工智能 机械 数学 物理 数学分析
作者
Satyadhyan Chickerur,P. Uday Ashish
标识
DOI:10.1109/icstcee54422.2021.9708548
摘要

Computational fluid dynamics (CFD) is the visualisation of how a fluid moves and interacts with things as it passes by using applied mathematics, physics, and computational software. The project is designed to simulate fluid flow of a particle based on provided boundary conditions using High Performance Computing (HPC), with two-dimensional picture files as input to the software and fluid flow of a particle generated based on these image data. The Naiver Stokes Equation and the Lattice Boltzmann Equation are used to create these fluid flow particles.The governing equations based on the conservation law of fluid physical characteristics lead the primary structure of thermofluids investigations. Fluid flow is created depending on the item using the three governing equations from the conservation laws of physics. CFD simulation, on the other hand, which is a Iterative process is frequently computationally costly, memory-intensive, and time-consuming. A model based on convolutional neural networks, is proposed for predicting non-uniform flow in 2D to over come these disadvantages. The proposed approach thus aims to aid the behaviour of fluid particles on a certain system and to assist in the development of the system based on the fluid particles that travel through it. At the early stages of design, this technique can give quick feedback for real-time design revisions. In comparison to previous approximation methods in the aerodynamics domain, CNNs provide for efficient velocity field estimate and took less time then the previous approximation method. As CFD based CNN model is more effective to 2D design(2D aeroplane dataset) as it is in research stage lot more experiments have to be made for 3D designs. Designers and engineers may also use the CFD based CNN model directly in their 2D design space exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Hilda007应助矮小的海豚采纳,获得10
1秒前
挖掘机完成签到,获得积分10
1秒前
一只呆果蝇完成签到 ,获得积分10
3秒前
含蓄的白莲完成签到,获得积分10
3秒前
ding应助黄贰叁采纳,获得10
3秒前
4秒前
慢慢发布了新的文献求助10
6秒前
伍姝慧发布了新的文献求助10
7秒前
8秒前
星辰大海应助踏实的雨南采纳,获得10
9秒前
9秒前
复杂斓完成签到,获得积分10
12秒前
persi完成签到 ,获得积分10
12秒前
研友_Z119gZ完成签到 ,获得积分10
13秒前
冷静的豪发布了新的文献求助10
13秒前
zhujingyao给zhujingyao的求助进行了留言
13秒前
独角兽发布了新的文献求助10
15秒前
15秒前
一叶知秋应助vera采纳,获得20
16秒前
17秒前
叶子的叶完成签到,获得积分10
17秒前
火火完成签到 ,获得积分10
18秒前
天天快乐应助pxh采纳,获得10
19秒前
董亚琴完成签到,获得积分10
19秒前
李鹏完成签到 ,获得积分10
19秒前
在水一方应助独角兽采纳,获得10
19秒前
科研通AI6应助冷静的豪采纳,获得10
20秒前
小滨发布了新的文献求助10
20秒前
CipherSage应助ysy采纳,获得10
21秒前
科目三应助zzz采纳,获得10
21秒前
给我瑞克五代完成签到,获得积分10
22秒前
刻苦小鸭子完成签到,获得积分10
23秒前
23秒前
Ian完成签到 ,获得积分10
24秒前
顾矜应助ZZZ采纳,获得30
24秒前
26秒前
Maxstein完成签到,获得积分10
26秒前
火火关注了科研通微信公众号
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648