A Convolutional Neural Network Based Approach for Computational Fluid Dynamics

计算流体力学 流体力学 格子Boltzmann方法 计算机科学 空气动力学 卷积神经网络 边值问题 守恒定律 计算科学 人工智能 机械 数学 物理 数学分析
作者
Satyadhyan Chickerur,P. Uday Ashish
标识
DOI:10.1109/icstcee54422.2021.9708548
摘要

Computational fluid dynamics (CFD) is the visualisation of how a fluid moves and interacts with things as it passes by using applied mathematics, physics, and computational software. The project is designed to simulate fluid flow of a particle based on provided boundary conditions using High Performance Computing (HPC), with two-dimensional picture files as input to the software and fluid flow of a particle generated based on these image data. The Naiver Stokes Equation and the Lattice Boltzmann Equation are used to create these fluid flow particles.The governing equations based on the conservation law of fluid physical characteristics lead the primary structure of thermofluids investigations. Fluid flow is created depending on the item using the three governing equations from the conservation laws of physics. CFD simulation, on the other hand, which is a Iterative process is frequently computationally costly, memory-intensive, and time-consuming. A model based on convolutional neural networks, is proposed for predicting non-uniform flow in 2D to over come these disadvantages. The proposed approach thus aims to aid the behaviour of fluid particles on a certain system and to assist in the development of the system based on the fluid particles that travel through it. At the early stages of design, this technique can give quick feedback for real-time design revisions. In comparison to previous approximation methods in the aerodynamics domain, CNNs provide for efficient velocity field estimate and took less time then the previous approximation method. As CFD based CNN model is more effective to 2D design(2D aeroplane dataset) as it is in research stage lot more experiments have to be made for 3D designs. Designers and engineers may also use the CFD based CNN model directly in their 2D design space exploration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的梦凡完成签到,获得积分10
1秒前
3秒前
流星噬月完成签到,获得积分10
3秒前
传奇3应助小柠檬采纳,获得10
3秒前
薛定谔的猫完成签到,获得积分10
4秒前
十一月的阴天完成签到,获得积分10
4秒前
4秒前
彭于晏应助xh采纳,获得10
4秒前
小梅超顺利完成签到 ,获得积分10
5秒前
yuliuism应助Doris采纳,获得20
5秒前
一一完成签到,获得积分10
5秒前
顺心的半兰完成签到 ,获得积分10
6秒前
Orange应助w2503采纳,获得10
7秒前
流星噬月发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
善学以致用应助123采纳,获得10
8秒前
夸父完成签到,获得积分10
10秒前
mu完成签到,获得积分10
10秒前
小小酥发布了新的文献求助10
10秒前
11秒前
顺利的夜梦完成签到,获得积分10
12秒前
12秒前
12秒前
wanci应助ZeSheng采纳,获得10
15秒前
思源应助流星噬月采纳,获得10
15秒前
zzzxxx发布了新的文献求助10
16秒前
梨花完成签到,获得积分10
16秒前
bulabulabu完成签到,获得积分10
16秒前
zzz发布了新的文献求助10
16秒前
科研通AI2S应助孙朱珠采纳,获得10
17秒前
是盐的学术号吖完成签到 ,获得积分10
17秒前
小一完成签到,获得积分20
17秒前
脑洞疼应助xlx采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
谷歌狗发布了新的文献求助10
19秒前
zhu完成签到 ,获得积分10
20秒前
科研通AI2S应助yishufanhua采纳,获得10
20秒前
我是老大应助谨慎的沉鱼采纳,获得10
21秒前
酷波er应助小小酥采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597169
求助须知:如何正确求助?哪些是违规求助? 4682435
关于积分的说明 14826266
捐赠科研通 4659721
什么是DOI,文献DOI怎么找? 2536464
邀请新用户注册赠送积分活动 1504138
关于科研通互助平台的介绍 1470139