A Convolutional Neural Network Based Approach for Computational Fluid Dynamics

计算流体力学 流体力学 格子Boltzmann方法 计算机科学 空气动力学 卷积神经网络 边值问题 守恒定律 计算科学 人工智能 机械 数学 物理 数学分析
作者
Satyadhyan Chickerur,P. Uday Ashish
标识
DOI:10.1109/icstcee54422.2021.9708548
摘要

Computational fluid dynamics (CFD) is the visualisation of how a fluid moves and interacts with things as it passes by using applied mathematics, physics, and computational software. The project is designed to simulate fluid flow of a particle based on provided boundary conditions using High Performance Computing (HPC), with two-dimensional picture files as input to the software and fluid flow of a particle generated based on these image data. The Naiver Stokes Equation and the Lattice Boltzmann Equation are used to create these fluid flow particles.The governing equations based on the conservation law of fluid physical characteristics lead the primary structure of thermofluids investigations. Fluid flow is created depending on the item using the three governing equations from the conservation laws of physics. CFD simulation, on the other hand, which is a Iterative process is frequently computationally costly, memory-intensive, and time-consuming. A model based on convolutional neural networks, is proposed for predicting non-uniform flow in 2D to over come these disadvantages. The proposed approach thus aims to aid the behaviour of fluid particles on a certain system and to assist in the development of the system based on the fluid particles that travel through it. At the early stages of design, this technique can give quick feedback for real-time design revisions. In comparison to previous approximation methods in the aerodynamics domain, CNNs provide for efficient velocity field estimate and took less time then the previous approximation method. As CFD based CNN model is more effective to 2D design(2D aeroplane dataset) as it is in research stage lot more experiments have to be made for 3D designs. Designers and engineers may also use the CFD based CNN model directly in their 2D design space exploration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jingjing完成签到 ,获得积分10
刚刚
1秒前
君尧发布了新的文献求助10
1秒前
FashionBoy应助王宽宽宽采纳,获得10
1秒前
1秒前
科研通AI6应助王志新采纳,获得10
1秒前
2秒前
魏家乐完成签到,获得积分10
2秒前
wyuwqhjp发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
酷酷怀曼完成签到,获得积分10
3秒前
华仔应助QWE采纳,获得10
3秒前
li发布了新的文献求助10
3秒前
hezhuyou发布了新的文献求助10
3秒前
江山完成签到,获得积分10
3秒前
3秒前
4秒前
斯文败类应助安安采纳,获得10
5秒前
5秒前
6秒前
6秒前
娃娃菜妮发布了新的文献求助10
6秒前
orange发布了新的文献求助10
6秒前
7秒前
去玩儿发布了新的文献求助10
7秒前
哈哈哈哈完成签到,获得积分10
7秒前
滕可燕完成签到,获得积分10
7秒前
8秒前
小蘑菇应助刚国忠采纳,获得10
8秒前
mylove应助Sid采纳,获得10
9秒前
承乐发布了新的文献求助30
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
王宽宽宽完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836