已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Convolutional Neural Network Based Approach for Computational Fluid Dynamics

计算流体力学 流体力学 格子Boltzmann方法 计算机科学 空气动力学 卷积神经网络 边值问题 守恒定律 计算科学 人工智能 机械 数学 物理 数学分析
作者
Satyadhyan Chickerur,P. Uday Ashish
标识
DOI:10.1109/icstcee54422.2021.9708548
摘要

Computational fluid dynamics (CFD) is the visualisation of how a fluid moves and interacts with things as it passes by using applied mathematics, physics, and computational software. The project is designed to simulate fluid flow of a particle based on provided boundary conditions using High Performance Computing (HPC), with two-dimensional picture files as input to the software and fluid flow of a particle generated based on these image data. The Naiver Stokes Equation and the Lattice Boltzmann Equation are used to create these fluid flow particles.The governing equations based on the conservation law of fluid physical characteristics lead the primary structure of thermofluids investigations. Fluid flow is created depending on the item using the three governing equations from the conservation laws of physics. CFD simulation, on the other hand, which is a Iterative process is frequently computationally costly, memory-intensive, and time-consuming. A model based on convolutional neural networks, is proposed for predicting non-uniform flow in 2D to over come these disadvantages. The proposed approach thus aims to aid the behaviour of fluid particles on a certain system and to assist in the development of the system based on the fluid particles that travel through it. At the early stages of design, this technique can give quick feedback for real-time design revisions. In comparison to previous approximation methods in the aerodynamics domain, CNNs provide for efficient velocity field estimate and took less time then the previous approximation method. As CFD based CNN model is more effective to 2D design(2D aeroplane dataset) as it is in research stage lot more experiments have to be made for 3D designs. Designers and engineers may also use the CFD based CNN model directly in their 2D design space exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
xx完成签到 ,获得积分10
3秒前
爆米花应助wing00024采纳,获得10
7秒前
雾蓝发布了新的文献求助20
9秒前
hucheng发布了新的文献求助10
14秒前
20秒前
Cathy完成签到,获得积分10
23秒前
害怕的鱼完成签到 ,获得积分10
25秒前
EE完成签到 ,获得积分10
30秒前
今后应助服部平次采纳,获得10
36秒前
Neo完成签到 ,获得积分10
37秒前
Shafiq发布了新的文献求助10
38秒前
神经蛙完成签到,获得积分10
41秒前
李健的小迷弟应助tttttt采纳,获得10
41秒前
50秒前
嗯哼应助风行水上采纳,获得20
53秒前
服部平次发布了新的文献求助10
55秒前
Iris完成签到 ,获得积分10
57秒前
YSY完成签到,获得积分10
59秒前
1分钟前
Otter完成签到,获得积分10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
江湖小妖完成签到 ,获得积分0
1分钟前
morena发布了新的文献求助10
1分钟前
LYY发布了新的文献求助10
1分钟前
1分钟前
函数完成签到 ,获得积分10
1分钟前
cinn完成签到 ,获得积分10
1分钟前
1分钟前
我是老大应助萧奕尘采纳,获得10
1分钟前
ccc发布了新的文献求助10
1分钟前
不好发布了新的文献求助10
1分钟前
研友_VZG7GZ应助yzh1129采纳,获得10
1分钟前
赘婿应助研究牲采纳,获得10
1分钟前
白沙湾发布了新的文献求助10
1分钟前
wx2360ouc发布了新的文献求助30
1分钟前
萧奕尘完成签到,获得积分10
1分钟前
Rn完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3077636
求助须知:如何正确求助?哪些是违规求助? 2730474
关于积分的说明 7512877
捐赠科研通 2378667
什么是DOI,文献DOI怎么找? 1261382
科研通“疑难数据库(出版商)”最低求助积分说明 611496
版权声明 597248