A Convolutional Neural Network Based Approach for Computational Fluid Dynamics

计算流体力学 流体力学 格子Boltzmann方法 计算机科学 空气动力学 卷积神经网络 边值问题 守恒定律 计算科学 人工智能 机械 数学 物理 数学分析
作者
Satyadhyan Chickerur,P. Uday Ashish
标识
DOI:10.1109/icstcee54422.2021.9708548
摘要

Computational fluid dynamics (CFD) is the visualisation of how a fluid moves and interacts with things as it passes by using applied mathematics, physics, and computational software. The project is designed to simulate fluid flow of a particle based on provided boundary conditions using High Performance Computing (HPC), with two-dimensional picture files as input to the software and fluid flow of a particle generated based on these image data. The Naiver Stokes Equation and the Lattice Boltzmann Equation are used to create these fluid flow particles.The governing equations based on the conservation law of fluid physical characteristics lead the primary structure of thermofluids investigations. Fluid flow is created depending on the item using the three governing equations from the conservation laws of physics. CFD simulation, on the other hand, which is a Iterative process is frequently computationally costly, memory-intensive, and time-consuming. A model based on convolutional neural networks, is proposed for predicting non-uniform flow in 2D to over come these disadvantages. The proposed approach thus aims to aid the behaviour of fluid particles on a certain system and to assist in the development of the system based on the fluid particles that travel through it. At the early stages of design, this technique can give quick feedback for real-time design revisions. In comparison to previous approximation methods in the aerodynamics domain, CNNs provide for efficient velocity field estimate and took less time then the previous approximation method. As CFD based CNN model is more effective to 2D design(2D aeroplane dataset) as it is in research stage lot more experiments have to be made for 3D designs. Designers and engineers may also use the CFD based CNN model directly in their 2D design space exploration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长剑玉珥完成签到,获得积分10
刚刚
mika910完成签到 ,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
liao应助zwc采纳,获得10
2秒前
汉堡包应助无昵称采纳,获得10
2秒前
2秒前
sqcpk完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
小菜一碟完成签到,获得积分10
2秒前
ori完成签到,获得积分10
3秒前
SibetHu发布了新的文献求助10
4秒前
CodeCraft应助小华采纳,获得10
4秒前
4秒前
4秒前
bkagyin应助豆儿嘚小豆儿采纳,获得10
4秒前
典雅夏之完成签到,获得积分10
4秒前
hy发布了新的文献求助10
4秒前
4秒前
bkagyin应助啧啧啧采纳,获得10
5秒前
5秒前
曾经富发布了新的文献求助10
5秒前
5秒前
听雨应助桃子e采纳,获得10
5秒前
潇洒紫真发布了新的文献求助10
6秒前
科研通AI2S应助Catherine采纳,获得10
6秒前
sss发布了新的文献求助10
6秒前
大萌完成签到,获得积分10
6秒前
bkagyin应助QQQ采纳,获得10
6秒前
6秒前
6秒前
7秒前
逍遥猪皮完成签到,获得积分10
7秒前
布丁大师完成签到,获得积分10
7秒前
qwq完成签到,获得积分10
7秒前
可乐加冰发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440