A Convolutional Neural Network Based Approach for Computational Fluid Dynamics

计算流体力学 流体力学 格子Boltzmann方法 计算机科学 空气动力学 卷积神经网络 边值问题 守恒定律 计算科学 人工智能 机械 数学 物理 数学分析
作者
Satyadhyan Chickerur,P. Uday Ashish
标识
DOI:10.1109/icstcee54422.2021.9708548
摘要

Computational fluid dynamics (CFD) is the visualisation of how a fluid moves and interacts with things as it passes by using applied mathematics, physics, and computational software. The project is designed to simulate fluid flow of a particle based on provided boundary conditions using High Performance Computing (HPC), with two-dimensional picture files as input to the software and fluid flow of a particle generated based on these image data. The Naiver Stokes Equation and the Lattice Boltzmann Equation are used to create these fluid flow particles.The governing equations based on the conservation law of fluid physical characteristics lead the primary structure of thermofluids investigations. Fluid flow is created depending on the item using the three governing equations from the conservation laws of physics. CFD simulation, on the other hand, which is a Iterative process is frequently computationally costly, memory-intensive, and time-consuming. A model based on convolutional neural networks, is proposed for predicting non-uniform flow in 2D to over come these disadvantages. The proposed approach thus aims to aid the behaviour of fluid particles on a certain system and to assist in the development of the system based on the fluid particles that travel through it. At the early stages of design, this technique can give quick feedback for real-time design revisions. In comparison to previous approximation methods in the aerodynamics domain, CNNs provide for efficient velocity field estimate and took less time then the previous approximation method. As CFD based CNN model is more effective to 2D design(2D aeroplane dataset) as it is in research stage lot more experiments have to be made for 3D designs. Designers and engineers may also use the CFD based CNN model directly in their 2D design space exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三不靠完成签到,获得积分10
刚刚
孤独的一鸣完成签到,获得积分10
刚刚
鲤鱼凡松完成签到,获得积分10
刚刚
hhhbbb发布了新的文献求助10
刚刚
浮游应助神勇的土豆采纳,获得10
1秒前
Faine完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
嘟噜哒啦完成签到,获得积分10
3秒前
傻呗小涛d发布了新的文献求助10
5秒前
5秒前
6秒前
深情安青应助听话的黑猫采纳,获得10
6秒前
银剑邪巫完成签到,获得积分10
6秒前
Faine发布了新的文献求助10
7秒前
8秒前
尤萨发布了新的文献求助10
10秒前
科研通AI5应助王智勇采纳,获得10
11秒前
阁主完成签到,获得积分10
11秒前
是多少应助学习学习学习采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
楠木木完成签到 ,获得积分10
11秒前
12秒前
13秒前
充电宝应助fangze采纳,获得10
13秒前
14秒前
15秒前
wooyn完成签到,获得积分20
15秒前
上官若男应助LM采纳,获得10
16秒前
刻苦熠彤发布了新的文献求助20
16秒前
czs发布了新的文献求助10
16秒前
拉长的幻波完成签到,获得积分10
17秒前
17秒前
大个应助yy采纳,获得10
17秒前
充电宝应助llllllll采纳,获得10
17秒前
17秒前
无花果应助Yu采纳,获得30
17秒前
kkkkkk发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4992024
求助须知:如何正确求助?哪些是违规求助? 4240274
关于积分的说明 13209854
捐赠科研通 4035328
什么是DOI,文献DOI怎么找? 2207864
邀请新用户注册赠送积分活动 1218779
关于科研通互助平台的介绍 1137175