亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Convolutional Neural Network Based Approach for Computational Fluid Dynamics

计算流体力学 流体力学 格子Boltzmann方法 计算机科学 空气动力学 卷积神经网络 边值问题 守恒定律 计算科学 人工智能 机械 数学 物理 数学分析
作者
Satyadhyan Chickerur,P. Uday Ashish
标识
DOI:10.1109/icstcee54422.2021.9708548
摘要

Computational fluid dynamics (CFD) is the visualisation of how a fluid moves and interacts with things as it passes by using applied mathematics, physics, and computational software. The project is designed to simulate fluid flow of a particle based on provided boundary conditions using High Performance Computing (HPC), with two-dimensional picture files as input to the software and fluid flow of a particle generated based on these image data. The Naiver Stokes Equation and the Lattice Boltzmann Equation are used to create these fluid flow particles.The governing equations based on the conservation law of fluid physical characteristics lead the primary structure of thermofluids investigations. Fluid flow is created depending on the item using the three governing equations from the conservation laws of physics. CFD simulation, on the other hand, which is a Iterative process is frequently computationally costly, memory-intensive, and time-consuming. A model based on convolutional neural networks, is proposed for predicting non-uniform flow in 2D to over come these disadvantages. The proposed approach thus aims to aid the behaviour of fluid particles on a certain system and to assist in the development of the system based on the fluid particles that travel through it. At the early stages of design, this technique can give quick feedback for real-time design revisions. In comparison to previous approximation methods in the aerodynamics domain, CNNs provide for efficient velocity field estimate and took less time then the previous approximation method. As CFD based CNN model is more effective to 2D design(2D aeroplane dataset) as it is in research stage lot more experiments have to be made for 3D designs. Designers and engineers may also use the CFD based CNN model directly in their 2D design space exploration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
23秒前
Marciu33发布了新的文献求助10
28秒前
31秒前
上官若男应助默默的板栗采纳,获得10
49秒前
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
小唐完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
chenlc971125完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
loitinsuen完成签到,获得积分10
2分钟前
2分钟前
在水一方应助me采纳,获得10
3分钟前
3分钟前
3分钟前
默默的板栗完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
外向的妍完成签到,获得积分10
3分钟前
走啊走应助绝世高手采纳,获得30
3分钟前
雪白的听寒完成签到 ,获得积分10
3分钟前
慕青应助简单的凡儿采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
曦耀发布了新的文献求助20
5分钟前
黄嘉慧完成签到 ,获得积分10
5分钟前
MGraceLi_sci完成签到,获得积分10
5分钟前
所所应助zhanghua采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534236
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582465
捐赠科研通 4562539
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450924