SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 大地测量学 生物 古生物学 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangdoudou关注了科研通微信公众号
3秒前
lansing完成签到 ,获得积分10
3秒前
Li完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
结实天川发布了新的文献求助10
7秒前
微笑完成签到,获得积分10
8秒前
充电宝应助1234567采纳,获得10
9秒前
李桂芳完成签到,获得积分10
11秒前
拽而不狂完成签到,获得积分10
11秒前
花汀酒完成签到 ,获得积分10
12秒前
是真的宇航员啊完成签到,获得积分10
13秒前
14秒前
14秒前
文艺的懿完成签到,获得积分10
16秒前
水123发布了新的文献求助10
19秒前
匡杰嘉发布了新的文献求助10
19秒前
20秒前
20秒前
山长子完成签到,获得积分10
21秒前
清爽的诗槐完成签到,获得积分10
22秒前
拽而不狂发布了新的文献求助10
24秒前
swan完成签到 ,获得积分10
24秒前
25秒前
愤怒的连虎完成签到,获得积分20
25秒前
Amber发布了新的文献求助10
26秒前
善学以致用应助WYH采纳,获得10
26秒前
草拟大坝完成签到 ,获得积分0
27秒前
27秒前
28秒前
shinble发布了新的文献求助30
30秒前
切切发布了新的文献求助10
33秒前
懒洋洋完成签到,获得积分10
33秒前
Hilda007发布了新的文献求助10
33秒前
cc完成签到 ,获得积分20
34秒前
34秒前
优美紫槐应助清爽的诗槐采纳,获得10
35秒前
dd完成签到,获得积分10
37秒前
Miianlli完成签到 ,获得积分10
38秒前
酷酷完成签到,获得积分10
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603927
求助须知:如何正确求助?哪些是违规求助? 4688787
关于积分的说明 14856110
捐赠科研通 4695468
什么是DOI,文献DOI怎么找? 2541034
邀请新用户注册赠送积分活动 1507185
关于科研通互助平台的介绍 1471832