SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 大地测量学 生物 古生物学 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呜呜呜呜发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
ken发布了新的文献求助10
1秒前
大模型应助李李李采纳,获得10
2秒前
sn完成签到,获得积分10
2秒前
yy应助张张采纳,获得20
3秒前
超大鹅发布了新的文献求助10
3秒前
深情安青应助寒冬采纳,获得10
5秒前
飞123发布了新的文献求助10
5秒前
夏冰发布了新的文献求助10
5秒前
柠檬柠檬发布了新的文献求助10
5秒前
脑洞疼应助Feathamity采纳,获得10
5秒前
闪闪无敌发布了新的文献求助10
5秒前
晚灯君完成签到 ,获得积分0
6秒前
赘婿应助卧镁铀钳采纳,获得10
6秒前
素素发布了新的文献求助10
8秒前
8秒前
上官若男应助心秦采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
所所应助晴云采纳,获得10
10秒前
呜呜呜呜完成签到,获得积分20
10秒前
在水一方应助wenwliu采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
vchen0621发布了新的文献求助10
12秒前
海浪完成签到 ,获得积分10
13秒前
13秒前
Nemo完成签到,获得积分10
14秒前
15秒前
jouholly发布了新的文献求助20
15秒前
Owen应助Xangel采纳,获得30
16秒前
16秒前
gaojun发布了新的文献求助30
16秒前
静静在学呢完成签到,获得积分10
16秒前
科研通AI2S应助leeyc采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675761
求助须知:如何正确求助?哪些是违规求助? 4948864
关于积分的说明 15154614
捐赠科研通 4835061
什么是DOI,文献DOI怎么找? 2589850
邀请新用户注册赠送积分活动 1543573
关于科研通互助平台的介绍 1501325