SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 大地测量学 生物 古生物学 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助peach采纳,获得10
1秒前
吴祥坤完成签到,获得积分10
2秒前
是小雨呀完成签到,获得积分10
3秒前
wxnice发布了新的文献求助10
3秒前
缥缈夏山完成签到,获得积分10
3秒前
可靠之玉完成签到 ,获得积分10
5秒前
狒狒完成签到,获得积分10
5秒前
忆茶戏完成签到 ,获得积分10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
热心醉蝶应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
宇称yu完成签到 ,获得积分10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
7秒前
不想干活应助科研通管家采纳,获得10
7秒前
圆锥香蕉应助科研通管家采纳,获得20
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
不想干活应助科研通管家采纳,获得10
7秒前
上官若男应助万有引力采纳,获得10
7秒前
7秒前
热心醉蝶应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得50
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
xiaoguang应助科研通管家采纳,获得30
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
热心醉蝶应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
不倦应助科研通管家采纳,获得10
8秒前
不想干活应助科研通管家采纳,获得10
8秒前
热心醉蝶应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4544308
求助须知:如何正确求助?哪些是违规求助? 3976503
关于积分的说明 12314209
捐赠科研通 3644494
什么是DOI,文献DOI怎么找? 2007062
邀请新用户注册赠送积分活动 1042502
科研通“疑难数据库(出版商)”最低求助积分说明 931557