亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 古生物学 大地测量学 生物 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情依白发布了新的文献求助10
8秒前
35秒前
NFS发布了新的文献求助10
42秒前
空儒完成签到 ,获得积分10
46秒前
47秒前
Ken发布了新的文献求助10
51秒前
1分钟前
1分钟前
默默曼冬发布了新的文献求助10
1分钟前
aayy完成签到,获得积分20
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
aayy关注了科研通微信公众号
1分钟前
河狸完成签到,获得积分10
2分钟前
2分钟前
许大脚完成签到 ,获得积分10
2分钟前
2分钟前
忞航完成签到 ,获得积分10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
隐形曼青应助momo采纳,获得30
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
哈哈发布了新的文献求助30
4分钟前
小圭韦发布了新的文献求助10
4分钟前
南寅完成签到,获得积分10
5分钟前
5分钟前
默默曼冬完成签到,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
mirror应助小圭韦采纳,获得10
5分钟前
天雨流芳完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
Yuki完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681628
求助须知:如何正确求助?哪些是违规求助? 5011683
关于积分的说明 15175918
捐赠科研通 4841236
什么是DOI,文献DOI怎么找? 2594994
邀请新用户注册赠送积分活动 1547971
关于科研通互助平台的介绍 1506006