SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 大地测量学 生物 古生物学 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑万宝路关注了科研通微信公众号
刚刚
Orange应助禾苗采纳,获得10
刚刚
dj发布了新的文献求助10
刚刚
复方蛋酥卷完成签到,获得积分10
刚刚
北y关注了科研通微信公众号
刚刚
CCsci发布了新的文献求助10
2秒前
2秒前
土土完成签到,获得积分10
3秒前
shabbow完成签到,获得积分10
5秒前
幽默的元珊完成签到,获得积分10
5秒前
昱鱼七seven完成签到,获得积分10
5秒前
张若愚发布了新的文献求助10
5秒前
GY完成签到,获得积分10
6秒前
万能图书馆应助小叮当采纳,获得10
6秒前
zz发布了新的文献求助10
6秒前
鲤鱼曼香完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
斯文败类应助文静向南采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
hzauhuangxianzhe完成签到,获得积分10
10秒前
跳跃尔容发布了新的文献求助10
10秒前
能力越小责任越小完成签到,获得积分10
11秒前
11秒前
英俊的铭应助充满希望采纳,获得10
11秒前
11秒前
cl.完成签到,获得积分10
11秒前
查查完成签到,获得积分10
12秒前
情怀应助张若愚采纳,获得10
12秒前
xwwdcg完成签到,获得积分20
12秒前
12秒前
陈雨发布了新的文献求助10
12秒前
12秒前
打打应助Eig采纳,获得30
12秒前
牧海冬完成签到,获得积分10
12秒前
Akim应助橘涂初九采纳,获得10
13秒前
科研通AI6应助tianxiangning采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525966
求助须知:如何正确求助?哪些是违规求助? 4616113
关于积分的说明 14551945
捐赠科研通 4554358
什么是DOI,文献DOI怎么找? 2495803
邀请新用户注册赠送积分活动 1476217
关于科研通互助平台的介绍 1447879