SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 大地测量学 生物 古生物学 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云龙发布了新的文献求助10
刚刚
1秒前
XX完成签到,获得积分20
1秒前
乐可乐完成签到,获得积分10
1秒前
夏夜完成签到 ,获得积分10
3秒前
4秒前
4秒前
SciGPT应助好好好采纳,获得10
4秒前
今后应助雨中过客采纳,获得10
5秒前
火锅冒菜我的爱完成签到 ,获得积分10
5秒前
完美世界应助smh采纳,获得10
5秒前
哈基米发布了新的文献求助20
5秒前
今后应助xxd采纳,获得10
6秒前
无妄海发布了新的文献求助10
6秒前
侠客发布了新的文献求助10
6秒前
leec完成签到,获得积分10
7秒前
growl发布了新的文献求助10
7秒前
田様应助bestweiguo采纳,获得30
7秒前
duduguai发布了新的文献求助30
8秒前
8秒前
科研通AI2S应助贺光萌采纳,获得10
8秒前
科研通AI6应助柚子采纳,获得10
9秒前
WJN关闭了WJN文献求助
10秒前
zzjj完成签到,获得积分10
10秒前
xjx发布了新的文献求助10
10秒前
11秒前
Aurora完成签到,获得积分10
11秒前
qu蛐完成签到 ,获得积分10
11秒前
郗栗发布了新的文献求助10
11秒前
思源应助哭泣的书兰采纳,获得10
12秒前
浮游应助慢慢的地理人采纳,获得10
12秒前
13秒前
ABC完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
无奈元容完成签到,获得积分10
15秒前
偏遇发布了新的文献求助10
16秒前
16秒前
科研通AI6应助快乐采纳,获得10
16秒前
16秒前
午盏发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642354
求助须知:如何正确求助?哪些是违规求助? 4758746
关于积分的说明 15017371
捐赠科研通 4801005
什么是DOI,文献DOI怎么找? 2566290
邀请新用户注册赠送积分活动 1524440
关于科研通互助平台的介绍 1483953