SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 大地测量学 生物 古生物学 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分10
1秒前
CipherSage应助DLL采纳,获得10
1秒前
红黄蓝完成签到 ,获得积分10
3秒前
5秒前
LX完成签到,获得积分10
5秒前
打打应助Grace0610采纳,获得10
6秒前
6秒前
7秒前
8秒前
无花果应助呆萌从蓉采纳,获得10
8秒前
游戏人间完成签到 ,获得积分10
9秒前
dizi_88发布了新的文献求助10
9秒前
追寻绮烟完成签到,获得积分10
9秒前
gao完成签到 ,获得积分10
10秒前
sunny完成签到,获得积分10
10秒前
11秒前
凌小兔完成签到,获得积分10
11秒前
11秒前
开心的QQ熊完成签到,获得积分10
13秒前
执着的觅松完成签到,获得积分10
13秒前
14秒前
15秒前
xiying完成签到 ,获得积分10
15秒前
义气的灯泡关注了科研通微信公众号
17秒前
Allen完成签到,获得积分10
20秒前
20秒前
丰盛的煎饼应助归海神刀采纳,获得10
20秒前
勤劳汽车发布了新的文献求助10
20秒前
nana完成签到,获得积分10
21秒前
lailight完成签到,获得积分10
21秒前
汉桑波欸完成签到,获得积分10
22秒前
土木搬砖法律完成签到,获得积分10
22秒前
上官若男应助sniper111采纳,获得200
22秒前
竹羽完成签到 ,获得积分10
23秒前
科研通AI2S应助dizi_88采纳,获得10
24秒前
酷波er应助dizi_88采纳,获得10
24秒前
领导范儿应助一颗橙子采纳,获得10
25秒前
L77发布了新的文献求助10
25秒前
王一生完成签到,获得积分10
26秒前
Yolo完成签到,获得积分10
30秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165129
求助须知:如何正确求助?哪些是违规求助? 2816163
关于积分的说明 7911618
捐赠科研通 2475835
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632124
版权声明 602388