SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 大地测量学 生物 古生物学 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加纳完成签到,获得积分10
刚刚
张阳发布了新的文献求助10
刚刚
多多完成签到 ,获得积分10
刚刚
不会学习的小郭完成签到 ,获得积分10
刚刚
刚刚
刚刚
Sdpol完成签到,获得积分10
1秒前
rrrrrrun发布了新的文献求助10
1秒前
1秒前
JIAYIWANG完成签到,获得积分10
2秒前
Lieh完成签到,获得积分10
2秒前
江阳宏发布了新的文献求助10
3秒前
小星星完成签到 ,获得积分10
3秒前
wlas完成签到,获得积分10
3秒前
蜀安应助惠我喝彩采纳,获得30
3秒前
3秒前
星辰大海应助祥子的骆驼采纳,获得10
3秒前
完美世界应助11采纳,获得10
4秒前
科研通AI6应助lhr采纳,获得10
4秒前
1412发布了新的文献求助10
4秒前
情怀应助谦让疾采纳,获得10
4秒前
4秒前
852应助孟meng采纳,获得10
5秒前
十一完成签到,获得积分10
5秒前
JIAYIWANG发布了新的文献求助10
5秒前
5秒前
瓢瓢完成签到,获得积分10
5秒前
5秒前
不知道完成签到,获得积分10
5秒前
大个应助kento采纳,获得30
5秒前
rebubu应助CP采纳,获得10
6秒前
范范完成签到,获得积分20
6秒前
GGZ完成签到,获得积分10
6秒前
ZhangLetian完成签到,获得积分10
6秒前
陈梓锋完成签到 ,获得积分10
6秒前
桃桃好困完成签到,获得积分10
6秒前
7秒前
8秒前
爆米花应助无语的柚子采纳,获得10
8秒前
两滴水的云完成签到,获得积分10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699543
求助须知:如何正确求助?哪些是违规求助? 5131434
关于积分的说明 15226342
捐赠科研通 4854543
什么是DOI,文献DOI怎么找? 2604759
邀请新用户注册赠送积分活动 1556119
关于科研通互助平台的介绍 1514388