SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 大地测量学 生物 古生物学 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助yyyuan2026采纳,获得10
刚刚
chen完成签到,获得积分10
刚刚
ff完成签到,获得积分20
1秒前
仙女发布了新的文献求助10
2秒前
leilei发布了新的文献求助30
2秒前
2秒前
晚星就位完成签到,获得积分10
3秒前
3秒前
3秒前
共享精神应助happy采纳,获得10
3秒前
可爱的函函应助HJJHJH采纳,获得30
4秒前
华仔应助寒冷洋葱采纳,获得10
4秒前
4秒前
蘑菇完成签到,获得积分10
4秒前
豌豆射手完成签到,获得积分10
4秒前
乐乐应助yushanriqing采纳,获得10
5秒前
香蕉觅云应助5433采纳,获得10
5秒前
6秒前
Juanjuan完成签到,获得积分10
7秒前
7秒前
卢卡发布了新的文献求助10
7秒前
水魄完成签到 ,获得积分10
7秒前
搜集达人应助xieyuan采纳,获得10
8秒前
科研通AI6.1应助独特的春采纳,获得10
9秒前
琦铉完成签到,获得积分10
9秒前
9秒前
10秒前
Elaine发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
火星上的晓啸完成签到,获得积分10
12秒前
12秒前
TYT发布了新的文献求助10
12秒前
一一发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
13秒前
JamesPei应助小破仁采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078