SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 古生物学 大地测量学 生物 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
惰性气体发布了新的文献求助10
1秒前
1秒前
cy完成签到 ,获得积分20
1秒前
1秒前
2秒前
黑大帅发布了新的文献求助10
2秒前
小Z发布了新的文献求助10
2秒前
蓝天发布了新的文献求助10
2秒前
orixero应助2240920060采纳,获得10
2秒前
燕天与完成签到,获得积分10
3秒前
Akim应助Snoopy采纳,获得10
3秒前
橘酥酥呀完成签到,获得积分20
3秒前
醋溜荧光大蒜完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
普鲁卡因发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助20
4秒前
倦梦还完成签到,获得积分10
4秒前
玻璃发布了新的文献求助10
4秒前
李健应助拾柒采纳,获得10
4秒前
lz发布了新的文献求助10
5秒前
normankasimodo完成签到,获得积分10
5秒前
wu完成签到,获得积分10
5秒前
郭勇慧完成签到,获得积分10
6秒前
163发布了新的文献求助10
6秒前
csq69发布了新的文献求助80
6秒前
6秒前
zjy发布了新的文献求助10
6秒前
Owen应助夏小胖采纳,获得10
6秒前
无私幻枫完成签到,获得积分10
6秒前
求助人员应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
求助人员应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
陈宇蛟完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034