SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 大地测量学 生物 古生物学 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
云深不知处完成签到,获得积分10
5秒前
6秒前
慕青应助泽锦臻采纳,获得10
10秒前
Sandy发布了新的文献求助30
11秒前
斯文败类应助schrodinger采纳,获得10
12秒前
uouuo完成签到 ,获得积分10
13秒前
siriuslee99完成签到,获得积分10
13秒前
15秒前
15秒前
16秒前
18秒前
20秒前
大个应助张文静采纳,获得10
20秒前
聪慧的鸣凤完成签到,获得积分10
20秒前
欣慰电脑发布了新的文献求助10
20秒前
sssss发布了新的文献求助10
20秒前
泽锦臻发布了新的文献求助10
23秒前
Maria完成签到,获得积分10
26秒前
27秒前
30秒前
天一完成签到,获得积分10
32秒前
冷锋面发布了新的文献求助10
32秒前
领导范儿应助小情绪采纳,获得10
33秒前
34秒前
万能图书馆应助lixin采纳,获得10
35秒前
张文静发布了新的文献求助10
36秒前
连夜雪完成签到,获得积分10
37秒前
37秒前
37秒前
沉默的板凳完成签到,获得积分20
42秒前
45秒前
无花果应助科研通管家采纳,获得10
45秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
布溜应助科研通管家采纳,获得10
45秒前
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
蓝天应助科研通管家采纳,获得10
46秒前
科研通AI6应助科研通管家采纳,获得30
46秒前
隐形曼青应助科研通管家采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560555
求助须知:如何正确求助?哪些是违规求助? 4645805
关于积分的说明 14676221
捐赠科研通 4586997
什么是DOI,文献DOI怎么找? 2516667
邀请新用户注册赠送积分活动 1490212
关于科研通互助平台的介绍 1461088