SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 大地测量学 生物 古生物学 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助夹心酱的飞踢采纳,获得10
刚刚
张1发布了新的文献求助10
1秒前
1秒前
123完成签到 ,获得积分10
1秒前
1秒前
侯宜彤发布了新的文献求助10
2秒前
小菜狗发布了新的文献求助10
2秒前
Stefano发布了新的文献求助10
2秒前
2秒前
2秒前
浪荡胭脂马完成签到,获得积分10
3秒前
在水一方应助kk采纳,获得10
3秒前
flyabc完成签到,获得积分10
3秒前
Hello应助cz采纳,获得10
3秒前
3秒前
化学天空完成签到,获得积分10
4秒前
4秒前
4秒前
zljgy2000发布了新的文献求助10
5秒前
5秒前
小二郎应助zbr采纳,获得10
5秒前
呆萌安双发布了新的文献求助10
5秒前
京城不降雪c完成签到,获得积分10
6秒前
yaya发布了新的文献求助10
6秒前
Owen应助大炮弹采纳,获得10
6秒前
听风雨发布了新的文献求助10
6秒前
羡鱼发布了新的文献求助10
6秒前
缥缈的水彤完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
失眠的数据线完成签到,获得积分10
7秒前
7秒前
烁烁子完成签到,获得积分20
8秒前
胡春柳应助lucinda采纳,获得10
8秒前
1351567822应助啊懂采纳,获得80
8秒前
俭朴外绣发布了新的文献求助10
8秒前
乐乐应助复杂海豚采纳,获得10
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827