已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SAFRON: Stitching Across the Frontier Network for Generating Colorectal Cancer Histology Images

图像拼接 计算机科学 人工智能 分割 模式识别(心理学) 背景(考古学) 计算机视觉 图像分割 像素 深度学习 水准点(测量) 大地测量学 生物 古生物学 地理
作者
Srijay Deshpande,Fayyaz Minhas,Simon Graham,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:77: 102337-102337 被引量:20
标识
DOI:10.1016/j.media.2021.102337
摘要

Automated synthesis of histology images has several potential applications including the development of data-efficient deep learning algorithms. In the field of computational pathology, where histology images are large in size and visual context is crucial, synthesis of large high-resolution images via generative modeling is an important but challenging task due to memory and computational constraints. To address this challenge, we propose a novel framework called SAFRON (Stitching Across the FROntier Network) to construct realistic, large high-resolution tissue images conditioned on input tissue component masks. The main novelty in the framework is integration of stitching in its loss function which enables generation of images of arbitrarily large sizes after training on relatively small image patches while preserving morphological features with minimal boundary artifacts. We have used the proposed framework for generating, to the best of our knowledge, the largest-sized synthetic histology images to date (up to 11K×8K pixels). Compared to existing approaches, our framework is efficient in terms of the memory required for training and computations needed for synthesizing large high-resolution images. The quality of generated images was assessed quantitatively using Frechet Inception Distance as well as by 7 trained pathologists, who assigned a realism score to a set of images generated by SAFRON. The average realism score across all pathologists for synthetic images was as high as that of real images. We also show that training with additional synthetic data generated by SAFRON can significantly boost prediction performance of gland segmentation and cancer detection algorithms in colorectal cancer histology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜的紫菜完成签到 ,获得积分10
1秒前
sevenE发布了新的文献求助10
1秒前
迷路冰颜完成签到 ,获得积分10
1秒前
ll发布了新的文献求助10
1秒前
栗昊完成签到,获得积分10
2秒前
久久丫完成签到 ,获得积分10
2秒前
坚定盈发布了新的文献求助10
2秒前
ling完成签到,获得积分10
3秒前
6秒前
qin123完成签到 ,获得积分10
7秒前
7秒前
浮游应助孟喵喵喵采纳,获得10
7秒前
7秒前
aikka完成签到,获得积分10
8秒前
热心的豌豆完成签到 ,获得积分10
9秒前
12秒前
午盏发布了新的文献求助10
12秒前
小蘑菇应助aikka采纳,获得30
12秒前
温柔冰岚完成签到 ,获得积分10
13秒前
倩倩完成签到 ,获得积分10
13秒前
14秒前
14秒前
蟑螂恶霸完成签到,获得积分20
14秒前
14秒前
15秒前
Hello应助ceeray23采纳,获得20
16秒前
Apple发布了新的文献求助10
17秒前
ll完成签到,获得积分20
17秒前
17秒前
wsy发布了新的文献求助30
18秒前
海岸完成签到,获得积分10
18秒前
111发布了新的文献求助10
18秒前
谷雨完成签到 ,获得积分10
19秒前
21秒前
小马甲应助ceeray23采纳,获得20
23秒前
池雨完成签到 ,获得积分10
23秒前
Helene发布了新的文献求助10
25秒前
eiii完成签到,获得积分10
26秒前
浮游应助孟喵喵喵采纳,获得10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590231
求助须知:如何正确求助?哪些是违规求助? 4674624
关于积分的说明 14794913
捐赠科研通 4630761
什么是DOI,文献DOI怎么找? 2532630
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468576