A multi-granular linguistic distribution-based group decision making method for renewable energy technology selection

计算机科学 可再生能源 选择(遗传算法) 风险分析(工程) 运筹学 人工智能 管理科学 数学 经济 工程类 业务 电气工程
作者
Yingying Liang,Yanbing Ju,Luis Martínez,Peiwu Dong,Aihua Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:116: 108379-108379 被引量:14
标识
DOI:10.1016/j.asoc.2021.108379
摘要

The scarcity of resources requires a decrease in nonrenewable energy consumption, which progressively promotes the development of renewable energy due to its immense potential and environmental friendliness. Hence, the use of renewable energy technology is critical for realizing the economic effect, the environment effect and the social benefit unified. Generally, renewable energy technology selection is treated as a multiple criteria group decision making problem. However, decision makers are not allowed to express multiple preferences via personalized linguistic distribution assessments deliberating on diverse criteria in the existing approaches. This work proposes a multi-granular linguistic distribution-based group decision-making method by linking multi-granular linguistic distribution assessments and LINMAP (Linear Programming Technique for Multidimensional Analysis of Preference) method with a mathematical model that can simultaneously yield the credible weights of the considered criteria and prioritize the sequence of optimal renewable energy technologies. To this end, the linguistic distribution-based Hellinger distance measure and linguistic hierarchy-based multi-granular linguistic distribution transformation method are proposed. The decision framework is applied to a case study of power generation-based technology selection, generating reliable criteria weights and yielding acceptable outcomes based on collected assessments. Eventually, the sensitivity analysis and comparative analysis are conducted to verify the feasibility and practicability of our proposal. This flexible decision support technique is geared towards managers and strives to provide reference and inspiration for renewable energy technology selection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jtksbf完成签到 ,获得积分10
1秒前
Ava应助xyx采纳,获得10
1秒前
1秒前
卡皮巴拉发布了新的文献求助10
3秒前
4秒前
a1313发布了新的文献求助10
6秒前
7秒前
酷波er应助詹姆斯采纳,获得10
8秒前
11秒前
11秒前
研友_VZG7GZ应助意安采纳,获得10
12秒前
xmsswph发布了新的文献求助10
13秒前
13秒前
Akim应助noamin采纳,获得20
14秒前
本微尘发布了新的文献求助10
16秒前
17秒前
爱吃萝卜的熊猫完成签到,获得积分10
17秒前
十一发布了新的文献求助10
17秒前
17秒前
xyx发布了新的文献求助10
18秒前
18秒前
21秒前
神明发布了新的文献求助10
22秒前
Eason发布了新的文献求助10
23秒前
meetland完成签到,获得积分10
23秒前
丘比特应助GFGYZX采纳,获得20
23秒前
橘络发布了新的文献求助10
23秒前
隐形曼青应助wangzhao采纳,获得10
26秒前
Rita发布了新的文献求助10
26秒前
31秒前
臻君完成签到,获得积分20
31秒前
英俊的铭应助SQDHZJ采纳,获得10
32秒前
32秒前
ning完成签到 ,获得积分10
33秒前
Carol发布了新的文献求助10
35秒前
35秒前
37秒前
Lucas应助重要手机采纳,获得10
38秒前
怕黑道消完成签到 ,获得积分10
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589