人工智能
计算机科学
Python(编程语言)
概念证明
软件
机器学习
抗生素
程序设计语言
微生物学
生物
操作系统
作者
Andriamiharimamy Rajaonison,Stéphanie Le Page,Thomas Maurin,Hervé Chaudet,Didier Raoult,Sophie Alexandra Baron,Jean‐Marc Rolain
标识
DOI:10.1016/j.cmi.2022.03.035
摘要
Antibiotic susceptibility testing (AST) is necessary in order to adjust empirical antibiotic treatment, but the interpretation of results requires experience and knowledge. We have developed a machine learning software that is capable of reading AST images without any human intervention and that automatically interprets the AST, based on a database of antibiograms that have been clinically validated with European Committee on Antimicrobial Susceptibility Testing rules.We built a database of antibiograms that were labelled by senior microbiologists for three species: Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. We then developed Antilogic, a Python software based on an original image segmentation module and supervised learning models that we trained against the database. Finally, we blind tested Antilogic against a validation set of 5100 photos of antibiograms.We trained Antilogic against a database of 18072 pictures of antibiograms. Overall agreement against the validation set reached 97% (16 855/17 281) regarding phenotypes. The severity rate of errors was also evaluated: 1.66% (287/17 281) were major errors and 0.80% (136/17 281) were very major errors. After implementation of uncertainty quantifications, the rate of errors decreased to 0.80% (114/13 451) and 0.42% (51/13 451) for major and very major errors respectively.Antilogic is the first machine learning software that has been developed for AST interpretation. It is based on a novel approach that differs from the typical diameter measurement and expert system approach. Antilogic is a proof of concept that artificial intelligence can contribute to faster and easier diagnostic methods in the field of clinical microbiology.
科研通智能强力驱动
Strongly Powered by AbleSci AI