Antilogic, a new supervised machine learning software for the automatic interpretation of antibiotic susceptibility testing in clinical microbiology: proof-of-concept on three frequently isolated bacterial species

人工智能 计算机科学 Python(编程语言) 概念证明 软件 机器学习 抗生素 程序设计语言 微生物学 生物 操作系统
作者
Andriamiharimamy Rajaonison,Stéphanie Le Page,Thomas Maurin,Hervé Chaudet,Didier Raoult,Sophie Alexandra Baron,Jean‐Marc Rolain
出处
期刊:Clinical Microbiology and Infection [Elsevier BV]
卷期号:28 (9): 1286.e1-1286.e8
标识
DOI:10.1016/j.cmi.2022.03.035
摘要

Antibiotic susceptibility testing (AST) is necessary in order to adjust empirical antibiotic treatment, but the interpretation of results requires experience and knowledge. We have developed a machine learning software that is capable of reading AST images without any human intervention and that automatically interprets the AST, based on a database of antibiograms that have been clinically validated with European Committee on Antimicrobial Susceptibility Testing rules.We built a database of antibiograms that were labelled by senior microbiologists for three species: Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. We then developed Antilogic, a Python software based on an original image segmentation module and supervised learning models that we trained against the database. Finally, we blind tested Antilogic against a validation set of 5100 photos of antibiograms.We trained Antilogic against a database of 18072 pictures of antibiograms. Overall agreement against the validation set reached 97% (16 855/17 281) regarding phenotypes. The severity rate of errors was also evaluated: 1.66% (287/17 281) were major errors and 0.80% (136/17 281) were very major errors. After implementation of uncertainty quantifications, the rate of errors decreased to 0.80% (114/13 451) and 0.42% (51/13 451) for major and very major errors respectively.Antilogic is the first machine learning software that has been developed for AST interpretation. It is based on a novel approach that differs from the typical diameter measurement and expert system approach. Antilogic is a proof of concept that artificial intelligence can contribute to faster and easier diagnostic methods in the field of clinical microbiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
PAGE发布了新的文献求助10
2秒前
陈昕炜发布了新的文献求助10
2秒前
2秒前
hyd发布了新的文献求助10
3秒前
yiyi131发布了新的文献求助10
3秒前
jiafang发布了新的文献求助10
3秒前
科研通AI2S应助TCB采纳,获得10
5秒前
5秒前
kk发布了新的文献求助10
6秒前
爆米花应助静静采纳,获得10
7秒前
燕燕于飞发布了新的文献求助10
7秒前
whatever应助SuperFAN采纳,获得20
7秒前
小二郎应助吉里巴采纳,获得10
7秒前
7秒前
7秒前
幸福大碗发布了新的文献求助10
8秒前
8秒前
hyd完成签到,获得积分10
9秒前
Owen应助核桃采纳,获得10
10秒前
11秒前
11秒前
11秒前
笑笑发布了新的文献求助10
12秒前
自由南珍发布了新的文献求助10
12秒前
大气盼柳发布了新的文献求助20
12秒前
JamesPei应助QAQSS采纳,获得10
13秒前
t通应助皮毛柔软的猫采纳,获得10
13秒前
ddffgz发布了新的文献求助10
13秒前
共享精神应助Bran采纳,获得10
14秒前
虚幻初之发布了新的文献求助30
14秒前
15秒前
16秒前
yiyi131完成签到,获得积分10
16秒前
16秒前
16秒前
卷卷发布了新的文献求助10
16秒前
橘止发布了新的文献求助10
17秒前
17秒前
隐形曼青应助Aaron采纳,获得10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774979
求助须知:如何正确求助?哪些是违规求助? 3320751
关于积分的说明 10201628
捐赠科研通 3035637
什么是DOI,文献DOI怎么找? 1665574
邀请新用户注册赠送积分活动 796995
科研通“疑难数据库(出版商)”最低求助积分说明 757689