已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Investigating machine learning's capacity to enhance the prediction of career choices

职业教育 匹配(统计) 心理学 样品(材料) 人口 机器学习 应用心理学 人工智能 社会心理学 计算机科学 统计 教育学 色谱法 社会学 人口学 化学 数学
作者
Q. Chelsea Song,Hyun Joo Shin,Chen Tang,Alexis Hanna,Tara S. Behrend
出处
期刊:Personnel Psychology [Wiley]
卷期号:77 (2): 295-319 被引量:8
标识
DOI:10.1111/peps.12529
摘要

Abstract Vocational interest measurement has long played a significant role in work contexts, particularly in helping individuals make career choices. A recent meta‐analysis indicated that interest inventories have substantial validity for predicting career choices. However, traditional approaches to interest inventory scoring (e.g., profile matching) typically capture broad, or average relations between vocational interests and occupations in the population, yet may not be accurate in capturing the specific relations in a given sample. Machine learning (ML) approaches provide a potential way forward as they can effectively take into account complexities in the relation between interests and career choices. Thus, this study aims to enhance the accuracy of interest inventory‐based career choice prediction through the application of ML. Using a large sample ( N = 81,267) of employed and unemployed participants, we compared the prediction accuracy of a traditional interest profile method (profile matching) to a new machine‐learning augmented method in predicting occupational membership (for employed participants) and vocational aspirations (for unemployed participants). Results suggest that, compared to the traditional profile method, the machine‐learning augmented method resulted in higher overall accuracy for predicting both types of career choices. The machine‐learning augmented method was especially predictive of job categories with high base rates, yet underpredicted job categories with low base rates. These findings have practical implications for improving the utility of interest inventories for organizational practice, contributing to areas such as employee development, recruitment, job placement, and retention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳易槐发布了新的文献求助10
1秒前
水shui完成签到,获得积分10
1秒前
Glitter完成签到 ,获得积分10
2秒前
子车茗应助霸气的亿先采纳,获得30
2秒前
2秒前
YOLO完成签到,获得积分10
3秒前
开放的大侠完成签到,获得积分10
3秒前
5秒前
星露谷茄发布了新的文献求助30
6秒前
文涛完成签到,获得积分10
8秒前
yang完成签到 ,获得积分10
9秒前
毛豆应助煮饭吃Zz采纳,获得10
10秒前
李爱国应助呐呐呐呐呐呐采纳,获得10
11秒前
小情绪完成签到 ,获得积分10
12秒前
check003完成签到,获得积分10
12秒前
amengptsd完成签到,获得积分10
14秒前
成就乐珍完成签到 ,获得积分10
15秒前
cocolu应助柳易槐采纳,获得10
15秒前
peanut完成签到 ,获得积分10
18秒前
柒柒发布了新的文献求助10
18秒前
健康豆芽菜完成签到 ,获得积分10
19秒前
19秒前
光能使者完成签到,获得积分10
21秒前
小泉完成签到 ,获得积分10
23秒前
Felicity完成签到 ,获得积分10
23秒前
23秒前
24秒前
wysky37发布了新的文献求助10
24秒前
cocolu应助煮饭吃Zz采纳,获得10
25秒前
p_kunnnn完成签到,获得积分10
26秒前
qqq完成签到,获得积分10
29秒前
程小柒完成签到 ,获得积分10
29秒前
希望天下0贩的0应助wysky37采纳,获得10
29秒前
c123完成签到,获得积分10
30秒前
飞快的冰淇淋完成签到 ,获得积分10
31秒前
31秒前
几米完成签到 ,获得积分10
34秒前
wanci应助qqq采纳,获得10
37秒前
yinlao完成签到,获得积分10
39秒前
热带蚂蚁完成签到 ,获得积分10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455543
求助须知:如何正确求助?哪些是违规求助? 3050794
关于积分的说明 9022644
捐赠科研通 2739345
什么是DOI,文献DOI怎么找? 1502653
科研通“疑难数据库(出版商)”最低求助积分说明 694565
邀请新用户注册赠送积分活动 693358