Neural network model for bond strength of FRP bars in concrete

纤维增强塑料 结构工程 参数统计 人工神经网络 腐蚀 粘结强度 债券 材料科学 抗压强度 钢筋 脆弱性(计算) 复合材料 计算机科学 工程类 图层(电子) 数学 胶粘剂 人工智能 统计 经济 财务 计算机安全
作者
Nolan C. Concha
出处
期刊:Structures [Elsevier]
卷期号:41: 306-317 被引量:15
标识
DOI:10.1016/j.istruc.2022.04.088
摘要

Interest in FRP composite bars as reinforcement to concrete has increased over the years as it showed solutions to the drawbacks of steel such as its corrosion issues and vulnerability when employed in adverse environmental conditions. However, it is still not widely incorporated as a replacement to conventional steel primarily due to the complexity of its bond strength mechanism. This, therefore, imposes the need to establish a comprehensive relationship for the bond property of the FRP reinforced concrete. This paper developed a novel Artificial Neural Network (ANN) bond strength prediction model for FRP reinforced concrete using 184 hinged beam database from various existing experiments. From series of simulations performed, the model N 7-10-1 with ten nodes in the hidden layer appeared to be the best fit with the experimental results yielded the most favorable performance among other existing models. From the parametric analysis conducted, the compressive strength of the FRP reinforced concrete has proved to be the most dominant parameter in evaluating its bond behavior as determined by relative importance of 17.82%. Overall, the proposed ANN model has demonstrated the best prediction for FRP bond strength in comparison to previous studies and code equations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Evelyn关注了科研通微信公众号
1秒前
1秒前
WKY完成签到,获得积分10
2秒前
manan发布了新的文献求助10
2秒前
亮亮关注了科研通微信公众号
2秒前
yuming完成签到,获得积分10
2秒前
3秒前
Curllen完成签到,获得积分10
3秒前
lzj001983发布了新的文献求助10
3秒前
3秒前
shouyu29应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
立波完成签到,获得积分10
4秒前
4秒前
科目三应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
shouyu29应助科研通管家采纳,获得10
5秒前
许win应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
贪玩手链应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
嘎嘎顺利完成签到,获得积分10
6秒前
坤坤发布了新的文献求助10
7秒前
XXF发布了新的文献求助10
7秒前
wubobo完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740