Environmental DNA metabarcoding: Transforming how we survey animal and plant communities

生物 环境DNA 分子生态学 DNA 进化生物学 生态学 计算生物学 遗传学 生物多样性 人口 社会学 人口学
作者
Kristy Deiner,Holly M. Bik,Elvira Mächler,Mathew Seymour,Anaïs Lacoursière‐Roussel,Florian Altermatt,Simon Creer,Iliana Bista,David M. Lodge,Natasha de Vere,Michael E. Pfrender,Louis Bernatchez
出处
期刊:Molecular Ecology [Wiley]
卷期号:26 (21): 5872-5895 被引量:1434
标识
DOI:10.1111/mec.14350
摘要

The genomic revolution has fundamentally changed how we survey biodiversity on earth. High-throughput sequencing ("HTS") platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed "environmental DNA" or "eDNA"). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called "eDNA metabarcoding" and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
你好发布了新的文献求助10
1秒前
大模型应助Pandaer采纳,获得10
1秒前
CodeCraft应助凶狠的文昊采纳,获得30
2秒前
2秒前
充电宝应助闾丘惜寒采纳,获得30
2秒前
3秒前
Orange应助Zach采纳,获得10
3秒前
美丽谷雪关注了科研通微信公众号
3秒前
3秒前
gh1468712295完成签到,获得积分10
3秒前
neilqin完成签到,获得积分10
4秒前
5秒前
ksrcc发布了新的文献求助10
5秒前
ding应助小浪矢采纳,获得10
5秒前
魔叶树完成签到 ,获得积分0
5秒前
coke完成签到,获得积分10
5秒前
菠萝派发布了新的文献求助10
5秒前
6秒前
爆米花应助123采纳,获得10
6秒前
6秒前
今后应助dora332211采纳,获得10
6秒前
6秒前
yangyang2021完成签到,获得积分10
6秒前
Akim应助Wink14551采纳,获得10
7秒前
纪秋完成签到,获得积分10
7秒前
Spiderman完成签到,获得积分10
7秒前
Yolanda发布了新的文献求助20
7秒前
爆米花应助浅斟低唱采纳,获得10
8秒前
8秒前
不听发布了新的文献求助10
8秒前
大乐子发布了新的文献求助10
9秒前
bkagyin应助激流勇进wb采纳,获得10
9秒前
科研通AI5应助核桃酥采纳,获得10
9秒前
传奇3应助xiaosuda75采纳,获得10
9秒前
9秒前
10秒前
妮妮发布了新的文献求助10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524730
求助须知:如何正确求助?哪些是违规求助? 3105601
关于积分的说明 9275012
捐赠科研通 2802788
什么是DOI,文献DOI怎么找? 1538175
邀请新用户注册赠送积分活动 716104
科研通“疑难数据库(出版商)”最低求助积分说明 709191