Snowball: Iterative Model Evolution and Confident Sample Discovery for Semi-Supervised Learning on Very Small Labeled Datasets

计算机科学 一致性(知识库) 机器学习 人工智能 过程(计算) 样品(材料) 雪球取样 集合(抽象数据类型) 人工神经网络 迭代和增量开发 数据挖掘 统计 数学 化学 软件工程 色谱法 程序设计语言 操作系统
作者
Yang Li,Zhiqun Zhao,Hao Sun,Yigang Cen,Zhihai He
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:23: 1354-1366 被引量:9
标识
DOI:10.1109/tmm.2020.2997185
摘要

In this work, we develop a joint sample discovery and iterative model evolution method for semi-supervised learning on very small labeled training sets. We propose a master-teacher-student model framework to provide multi-layer guidance during the model evolution process with multiple iterations and generations. The teacher model is constructed by performing an exponential moving average of the student models obtained from past training steps. The master network combines the knowledge of the student and teacher models with additional access to newly discovered samples. The master and teacher models are then used to guide the training of the student network by enforcing the consistency between their predictions of unlabeled samples and evolve all models when more and more samples are discovered. Our extensive experiments demonstrate that the process of discovering confident samples from the unlabeled dataset, once coupled with the master-teacher-student network evolution, can significantly improve the overall semi-supervised learning performance. For example, on the CIFAR-10 dataset, with a small set of 250 labeled samples, our method achieves an error rate of 11.58%, more than 38% lower than Mean-Teacher (49.91%). When coupled with the MixMatch augmentation and loss function, the improvements are also significant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助liuliu采纳,获得10
刚刚
1秒前
violin发布了新的文献求助30
1秒前
yxb完成签到,获得积分10
1秒前
浮游应助皆非采纳,获得10
2秒前
2秒前
Cary完成签到,获得积分10
3秒前
3秒前
3秒前
彭于晏应助gooooood采纳,获得10
5秒前
6秒前
violin完成签到,获得积分10
6秒前
6秒前
7秒前
jason0023发布了新的文献求助30
8秒前
费费完成签到,获得积分10
8秒前
9秒前
9秒前
11秒前
13秒前
13秒前
吴昊发布了新的文献求助10
15秒前
fcnnn关注了科研通微信公众号
15秒前
费费发布了新的文献求助10
15秒前
泽烺木完成签到,获得积分10
16秒前
17秒前
17秒前
时尚问筠完成签到,获得积分10
19秒前
21秒前
慕青应助immymymi采纳,获得10
21秒前
时尚问筠发布了新的文献求助10
22秒前
24秒前
ZKL完成签到,获得积分10
24秒前
24秒前
乐乐应助gkw采纳,获得10
25秒前
tianshicanyi发布了新的文献求助10
25秒前
orixero应助Mircale采纳,获得10
26秒前
29秒前
Marco_hxkq发布了新的文献求助10
29秒前
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5145096
求助须知:如何正确求助?哪些是违规求助? 4342548
关于积分的说明 13523644
捐赠科研通 4183321
什么是DOI,文献DOI怎么找? 2293958
邀请新用户注册赠送积分活动 1294454
关于科研通互助平台的介绍 1237358