Snowball: Iterative Model Evolution and Confident Sample Discovery for Semi-Supervised Learning on Very Small Labeled Datasets

计算机科学 一致性(知识库) 机器学习 人工智能 过程(计算) 样品(材料) 雪球取样 集合(抽象数据类型) 人工神经网络 迭代和增量开发 数据挖掘 统计 数学 色谱法 操作系统 软件工程 化学 程序设计语言
作者
Yang Li,Zhiqun Zhao,Hao Sun,Yigang Cen,Zhihai He
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:23: 1354-1366 被引量:9
标识
DOI:10.1109/tmm.2020.2997185
摘要

In this work, we develop a joint sample discovery and iterative model evolution method for semi-supervised learning on very small labeled training sets. We propose a master-teacher-student model framework to provide multi-layer guidance during the model evolution process with multiple iterations and generations. The teacher model is constructed by performing an exponential moving average of the student models obtained from past training steps. The master network combines the knowledge of the student and teacher models with additional access to newly discovered samples. The master and teacher models are then used to guide the training of the student network by enforcing the consistency between their predictions of unlabeled samples and evolve all models when more and more samples are discovered. Our extensive experiments demonstrate that the process of discovering confident samples from the unlabeled dataset, once coupled with the master-teacher-student network evolution, can significantly improve the overall semi-supervised learning performance. For example, on the CIFAR-10 dataset, with a small set of 250 labeled samples, our method achieves an error rate of 11.58%, more than 38% lower than Mean-Teacher (49.91%). When coupled with the MixMatch augmentation and loss function, the improvements are also significant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4u完成签到,获得积分10
刚刚
simon完成签到,获得积分10
刚刚
gayfall完成签到,获得积分10
刚刚
王帅坤发布了新的文献求助10
1秒前
科研狗发布了新的文献求助10
1秒前
HtheJ完成签到,获得积分10
2秒前
2秒前
123321完成签到,获得积分10
2秒前
李健的小迷弟应助1234采纳,获得10
2秒前
2秒前
adore完成签到,获得积分20
2秒前
英俊的铭应助甜美的雁开采纳,获得10
3秒前
AbMole_小智完成签到,获得积分10
3秒前
玥越发布了新的文献求助30
4秒前
Ava应助天地一沙鸥采纳,获得10
4秒前
6rkuttsmdt完成签到,获得积分10
4秒前
雪白的凡灵完成签到,获得积分10
5秒前
yangyijx完成签到,获得积分10
6秒前
牛马完成签到,获得积分10
7秒前
直球科研发布了新的文献求助10
7秒前
7秒前
8秒前
HUA发布了新的文献求助10
8秒前
9秒前
yln发布了新的文献求助10
9秒前
10秒前
10秒前
KUZZZ完成签到,获得积分10
10秒前
11秒前
左丘以云发布了新的文献求助20
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
科研小白完成签到,获得积分10
13秒前
Ava应助KUZZZ采纳,获得10
14秒前
SciGPT应助平常的凝蕊采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653