Deep Learning With 3D Convolutional Neural Network for Noninvasive Prediction of Microvascular Invasion in Hepatocellular Carcinoma

肝细胞癌 卷积神经网络 计算机科学 深度学习 人工智能 人工神经网络 癌症研究 医学
作者
Yongxin Zhang,Xiaofei Lv,Jiliang Qiu,Bin Zhang,Lu Zhang,Fang Jin,Minmin Li,Luyan Chen,Fei Wang,Shuyi Liu,Shuixing Zhang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:54 (1): 134-143 被引量:54
标识
DOI:10.1002/jmri.27538
摘要

Background Microvascular invasion (MVI) is a critical prognostic factor of hepatocellular carcinoma (HCC). However, it could only be obtained by postoperative histological examination. Purpose To develop an end‐to‐end deep‐learning models based on MRI images for preoperative prediction of MVI in HCC patients who underwent surgical resection. Study type Retrospective. Population Two hundred and thirty‐seven patients with histologically confirmed HCC. Field strength 1.5 T and 3.0 T. Sequence Axial T 2 ‐weighted (T 2 ‐w) with turbo spin echo sequence, T 2 ‐Spectral Presaturation with Inversion Recovery (T 2 ‐SPIR), and dynamic contrast‐enhanced (DCE) imaging with fat suppressed enhanced T 1 high‐resolution isotropic volume examination. Assessment The patients were randomly divided into training ( N = 158) and validation ( N = 79) sets. Data augmentation by random rotation was performed on the training set and the sample size increased to 1940 for each MR sequence. A three‐dimensional convolutional neural network (3D CNN) was used to develop four deep‐learning models, including three single‐layer models based on single‐sequence, and fusion model combining three sequences. MVI status was obtained from the postoperative pathology reports. Statistical Tests The dice similarity coefficient (DSC) and Hausdorff distance (HD) were applied to assess the similarity and reproducibility between the manual segmentations of tumor from two radiologists. Receiver operating characteristic curve analysis was used to evaluate model performance. MVI was identified in 92 (38.8%) patients. Good reproducibility with interobserver DSCs of 0.90, 0.89, and 0.89 and HDs of 4.09, 3.67, and 3.60 was observed for PVP, T 2 WI, and T 2 ‐SPIR, respectively. The fusion model achieved an area under the curve (AUC) of 0.81, sensitivity of 69%, and specificity of 79% in the training set and 0.72, sensitivity of 55%, and specificity of 81% in the validation set. Data Conclusion 3D CNN model may serve as a noninvasive tool to predict MVI in HCC, whereas its accuracy needs to be enhanced with larger cohort. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪原白鹿发布了新的文献求助10
1秒前
从容的巧曼完成签到 ,获得积分10
1秒前
优秀含灵发布了新的文献求助30
3秒前
星辰大海应助小饼干1029采纳,获得10
3秒前
cocolu应助细嗅蔷薇采纳,获得30
4秒前
祎思完成签到,获得积分10
8秒前
8秒前
孙伟伟发布了新的文献求助20
8秒前
10秒前
小马驹完成签到,获得积分10
10秒前
博修发布了新的文献求助10
11秒前
keyanzhang发布了新的文献求助10
11秒前
12秒前
iKUN老司机发布了新的文献求助10
13秒前
酷波er应助高兴的忆曼采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
17秒前
yqf应助科研通管家采纳,获得30
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
充电宝应助博修采纳,获得10
21秒前
拓跋天磊发布了新的文献求助10
22秒前
22秒前
俭朴映阳发布了新的文献求助10
22秒前
23秒前
tyfelix完成签到,获得积分10
23秒前
23秒前
25秒前
26秒前
tyfelix发布了新的文献求助10
26秒前
ll发布了新的文献求助10
27秒前
留胡子的夏寒应助派派采纳,获得10
28秒前
666发布了新的文献求助300
29秒前
小饼干1029发布了新的文献求助10
30秒前
31秒前
努努力发布了新的文献求助10
34秒前
36秒前
刘秀完成签到 ,获得积分10
37秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380932
求助须知:如何正确求助?哪些是违规求助? 2995965
关于积分的说明 8766492
捐赠科研通 2681072
什么是DOI,文献DOI怎么找? 1468318
科研通“疑难数据库(出版商)”最低求助积分说明 678977
邀请新用户注册赠送积分活动 670988