Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy

蒙特卡罗方法 发光 光子 粒子疗法 离子 物理 材料科学 计算物理学 相似性(几何) 光学 数学 统计 计算机科学 人工智能 图像(数学) 梁(结构) 量子力学
作者
Takuya Yabe,Seiichi Yamamoto,Masahiro Oda,Kensaku Mori,T. Toshito,Takashi Akagi
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 3882-3891 被引量:14
标识
DOI:10.1002/mp.14372
摘要

Purpose We recently obtained nearly the same depth profiles of luminescence images of water as dose for protons by subtracting the Cerenkov light component emitted by secondary electrons of prompt gamma photons. However, estimating the distribution of Cerenkov light with this correction method is time‐consuming, depending on the irradiated energy of protons by Monte Carlo simulation. Therefore, we proposed a method of estimating dose distributions from the measured luminescence images of water using a deep convolutional neural network (DCNN). Methods In this study, we adopted the U‐Net architectures as the DCNN. To prepare a large amount of image data for DCNN training, we calculated the training data pairs of two‐dimensional (2D) dose distributions and luminescence images of water by Monte Carlo simulation for protons and carbon ions. After training the U‐Net model for protons or carbon ions using these dose distributions and luminescence images calculated by Monte Carlo simulation, we predicted the dose distributions from the calculated and measured luminescence images of water using the trained U‐Net model. Results All of the U‐Net model's predicted images were in good agreement with the MC‐calculated dose distributions and showed lower values of the root mean square percentage error (RSMPE) and higher values in the structural similarity index (SSIM) in comparison with these values for calculated or measured luminescence images. Conclusion We confirmed that the DCNN effectively predicts dose distributions in water from the measured as well as calculated luminescence images of water for particle therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让的青亦完成签到,获得积分10
2秒前
3秒前
大鑫发布了新的文献求助30
3秒前
sciN完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
keock完成签到,获得积分10
6秒前
所所应助kk采纳,获得10
9秒前
ln发布了新的文献求助10
9秒前
李爱国应助谦让若冰采纳,获得10
9秒前
Acc发布了新的文献求助10
9秒前
qianqian发布了新的文献求助10
10秒前
T Wang发布了新的文献求助10
11秒前
wandong发布了新的文献求助30
11秒前
11秒前
12秒前
besatified应助受伤芝麻采纳,获得20
13秒前
金刚经应助丽Li采纳,获得10
14秒前
乐乐应助风来枫去采纳,获得10
14秒前
终究完成签到,获得积分10
14秒前
华仔应助牛牛采纳,获得10
14秒前
15秒前
清爽的绫完成签到,获得积分10
16秒前
16秒前
JK_phd完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
科研通AI2S应助xwl9955采纳,获得50
19秒前
CipherSage应助ss采纳,获得10
19秒前
20秒前
科研通AI2S应助Acc采纳,获得10
21秒前
111发布了新的文献求助10
21秒前
谦让若冰发布了新的文献求助10
21秒前
22秒前
wandong完成签到,获得积分10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248346
求助须知:如何正确求助?哪些是违规求助? 2891768
关于积分的说明 8268557
捐赠科研通 2559696
什么是DOI,文献DOI怎么找? 1388596
科研通“疑难数据库(出版商)”最低求助积分说明 650772
邀请新用户注册赠送积分活动 627744