In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal–Organic Frameworks to Design Atomic Co1–P1N3 Interfacial Structure for Promoting Catalytic Performance

化学 催化作用 塔菲尔方程 X射线吸收精细结构 过电位 价(化学) 电负性 扩展X射线吸收精细结构 Atom(片上系统) 金属有机骨架 金属 结晶学 吸附 纳米技术 无机化学 物理化学 吸收光谱法 有机化学 材料科学 物理 电极 量子力学 光谱学 计算机科学 电化学 嵌入式系统
作者
Jiawei Wan,Zhenghang Zhao,Huishan Shang,Bo Peng,Wenxing Chen,Jiajing Pei,Lirong Zheng,Juncai Dong,Rui Cao,Ritimukta Sarangi,Zhuoli Jiang,Danni Zhou,Zhongbin Zhuang,Jiatao Zhang,Dingsheng Wang,Yadong Li
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:142 (18): 8431-8439 被引量:325
标识
DOI:10.1021/jacs.0c02229
摘要

The engineering coordination environment offers great opportunity in performance tunability of isolated metal single-atom catalysts. For the most popular metal–Nx (MNx) structure, the replacement of N atoms by some other atoms with relatively weak electronegativity has been regarded as a promising strategy for optimizing the coordination environment of an active metal center and promoting its catalytic performance, which is still a challenge. Herein, we proposed a new synthetic strategy of an in situ phosphatizing of triphenylphosphine encapsulated within metal–organic frameworks for designing atomic Co1–P1N3 interfacial structure, where a cobalt single atom is costabilized by one P atom and three N atoms (denoted as Co-SA/P-in situ). In the acidic media, the Co-SA/P-in situ catalyst with Co1–P1N3 interfacial structure exhibits excellent activity and durability for the hydrogen evolution reaction (HER) with a low overpotential of 98 mV at 10 mA cm–2 and a small Tafel slope of 47 mV dec–1, which are greatly superior to those of catalyst with Co1–N4 interfacial structure. We discover that the bond-length-extended high-valence Co1–P1N3 atomic interface structure plays a crucial role in boosting the HER performance, which is supported by in situ X-ray absorption fine structure (XAFS) measurements and density functional theory (DFT) calculation. We hope this work will promote the development of high performance metal single-atom catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
地下室没有鬼完成签到 ,获得积分10
1秒前
whh123完成签到 ,获得积分10
1秒前
天天快乐应助空禅yew采纳,获得10
2秒前
在水一方应助开心采纳,获得10
3秒前
Akim应助王w采纳,获得10
3秒前
towerman发布了新的文献求助10
3秒前
畅快平蓝完成签到,获得积分10
3秒前
大棒槌发布了新的文献求助10
4秒前
4秒前
Ann完成签到,获得积分10
4秒前
今今发布了新的文献求助10
5秒前
123123完成签到 ,获得积分10
5秒前
SciGPT应助伊酒采纳,获得10
6秒前
何糖发布了新的文献求助10
7秒前
ding应助SEV采纳,获得10
7秒前
田様应助csq采纳,获得10
7秒前
dafwfwaf发布了新的文献求助10
7秒前
7秒前
景别完成签到,获得积分10
8秒前
彭于晏应助zhappy采纳,获得20
8秒前
9秒前
xg发布了新的文献求助10
9秒前
10秒前
Tophet完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
FashionBoy应助落落采纳,获得10
12秒前
活力的青枫完成签到 ,获得积分10
12秒前
苏素肃发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
空禅yew发布了新的文献求助10
14秒前
汉堡包应助花开的声音1217采纳,获得10
14秒前
ying发布了新的文献求助10
14秒前
animenz完成签到,获得积分10
15秒前
tY发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808