The sulfonylurea herbicides are characterized by broad-spectrum weed control at very low use rates (c. 2–75 g ha−1), good crop selectivity, and very low acute and chronic animal toxicity. This class of herbicides acts through inhibition of acetolactate synthase (EC 4.1.3.18; also known as acetohydroxyacid synthase), thereby blocking the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. This inhibition leads to the rapid cessation of plant cell division and growth. Crop-selective sulfonylurea herbicides have been commercialized for use in wheat, barley, rice, corn, soybeans and oilseed rape, with additional crop-selective compounds in cotton, potatoes, and sugarbeet having been noted. Crop selectivity results from rapid metabolic inactivation of the herbicide in the tolerant crop. Under growth-room conditions, metabolic half-lives in tolerant crop plants range from 1–5 h, while sensitive plant species metabolize these herbicides much more slowly, with half-lives > 20 h. Pathways by which sulfonylurea herbicides are inactivated among these plants include aryl and aliphatic hydroxylation followed by glucose conjugation, sulfonylurea bridge hydrolysis and sulfonamide bond cleavage, oxidative O-demethylation and direct conjugation with (homo)glutathione. Sulfonylurea herbicides degrade in soil through a combination of bridge hydrolysis and microbial degradation. Hydrolysis is significantly faster under acidic (pH 5) than alkaline (pH 8) conditions, allowing the use of soil pH as a predictor of soil residual activity. Chemical and microbial processes combine to give typical field dissipation half-lives of 1–6 weeks, depending on the soil type, location and compound. Very short residual sulfonylurea herbicides with enhanced susceptibility to hydrolysis (DPX-L5300) and microbial degradation (thifensulfuron-methyl) have been developed.