Hierarchical convolutional neural networks for fashion image classification

计算机科学 卷积神经网络 MNIST数据库 人工智能 分类 上下文图像分类 分类器(UML) 服装 模式识别(心理学) 等级制度 图像(数学) 机器学习 人工神经网络 数据挖掘 考古 经济 市场经济 历史
作者
Yian Seo,Kyung‐shik Shin
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:116: 328-339 被引量:174
标识
DOI:10.1016/j.eswa.2018.09.022
摘要

Abstract Deep learning can be applied in various business fields for better performance. Especially, fashion-related businesses have started to apply deep learning techniques on their e-commerce such as apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The most important backbone of these applications is the image classification task. However, apparel classification can be difficult due to its various apparel properties, and complexity in the depth of categorization. In other words, multi-class apparel classification can be hard and ambiguous to separate among similar classes. Here, we find the need of image classification reflecting hierarchical structure of apparel categories. In most of the previous studies, hierarchy has not been considered in image classification when using Convolutional Neural Networks (CNN), and not even in fashion image classification using other methodologies. In this paper, we propose to apply Hierarchical Convolutional Neural Networks (H CNN) on apparel classification. This study has contribution in that this is the first trial to apply hierarchical classification of apparel using CNN and has significance in that the proposed model is a knowledge embedded classifier outputting hierarchical information. We implement H CNN using VGGNet on Fashion-MNIST dataset. Results have shown that when using H CNN model, the loss gets decreased and the accuracy gets improved than the base model without hierarchical structure. We conclude that H CNN brings better performance in classifying apparel.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
Glowworm完成签到,获得积分10
1秒前
精明尔曼完成签到,获得积分10
1秒前
书双完成签到,获得积分10
2秒前
雪泪应助十六夜彦采纳,获得10
2秒前
2秒前
爆米花应助知性的雅彤采纳,获得10
2秒前
丘比特应助achen采纳,获得10
3秒前
huihui完成签到,获得积分10
4秒前
情怀应助zds采纳,获得10
4秒前
赘婿应助Noor采纳,获得10
4秒前
4秒前
成功上岸发布了新的文献求助10
4秒前
4秒前
科研通AI6应助Hey采纳,获得10
4秒前
5秒前
书书完成签到,获得积分10
5秒前
三无少女完成签到,获得积分10
5秒前
Laus完成签到,获得积分10
5秒前
Aalo完成签到,获得积分10
6秒前
6秒前
麻薯麻薯完成签到,获得积分10
6秒前
hh完成签到,获得积分20
6秒前
ZOE应助苗硕恒采纳,获得200
6秒前
读研读到发疯完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
尘苏完成签到,获得积分20
8秒前
8秒前
9秒前
胖狗完成签到 ,获得积分10
9秒前
baobao完成签到,获得积分10
9秒前
9秒前
Glowworm发布了新的文献求助10
9秒前
9秒前
星辰大海应助无情的悟空采纳,获得10
10秒前
Lucas应助尼可采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546197
求助须知:如何正确求助?哪些是违规求助? 4632069
关于积分的说明 14624703
捐赠科研通 4573763
什么是DOI,文献DOI怎么找? 2507809
邀请新用户注册赠送积分活动 1484423
关于科研通互助平台的介绍 1455707