Hierarchical convolutional neural networks for fashion image classification

计算机科学 卷积神经网络 MNIST数据库 人工智能 分类 上下文图像分类 分类器(UML) 服装 模式识别(心理学) 等级制度 图像(数学) 机器学习 人工神经网络 数据挖掘 历史 经济 考古 市场经济
作者
Yian Seo,Kyung‐shik Shin
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:116: 328-339 被引量:174
标识
DOI:10.1016/j.eswa.2018.09.022
摘要

Abstract Deep learning can be applied in various business fields for better performance. Especially, fashion-related businesses have started to apply deep learning techniques on their e-commerce such as apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The most important backbone of these applications is the image classification task. However, apparel classification can be difficult due to its various apparel properties, and complexity in the depth of categorization. In other words, multi-class apparel classification can be hard and ambiguous to separate among similar classes. Here, we find the need of image classification reflecting hierarchical structure of apparel categories. In most of the previous studies, hierarchy has not been considered in image classification when using Convolutional Neural Networks (CNN), and not even in fashion image classification using other methodologies. In this paper, we propose to apply Hierarchical Convolutional Neural Networks (H CNN) on apparel classification. This study has contribution in that this is the first trial to apply hierarchical classification of apparel using CNN and has significance in that the proposed model is a knowledge embedded classifier outputting hierarchical information. We implement H CNN using VGGNet on Fashion-MNIST dataset. Results have shown that when using H CNN model, the loss gets decreased and the accuracy gets improved than the base model without hierarchical structure. We conclude that H CNN brings better performance in classifying apparel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静从露发布了新的文献求助10
刚刚
十三完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
慕青应助扭扭车采纳,获得10
3秒前
多多完成签到,获得积分10
4秒前
传奇3应助yizhi猫采纳,获得10
4秒前
kd完成签到,获得积分10
6秒前
诺诺完成签到,获得积分10
6秒前
Ava应助落后悟空采纳,获得10
7秒前
zyzhnu完成签到,获得积分10
7秒前
7秒前
H2CO3完成签到,获得积分10
7秒前
7秒前
李健的小迷弟应助昕昕233采纳,获得10
8秒前
杜客完成签到,获得积分10
9秒前
18发布了新的文献求助10
10秒前
谦让大雁发布了新的文献求助10
10秒前
收拾收拾完成签到,获得积分10
11秒前
11秒前
堀江真夏完成签到 ,获得积分10
11秒前
小体完成签到,获得积分10
12秒前
杨紫宸完成签到,获得积分10
12秒前
酷波er应助欣慰的书本采纳,获得10
12秒前
小郭发布了新的文献求助10
13秒前
快乐难敌发布了新的文献求助30
13秒前
派大星完成签到 ,获得积分10
13秒前
龙共完成签到,获得积分10
14秒前
上善若水完成签到 ,获得积分10
14秒前
15秒前
SYLH应助我爱学习采纳,获得10
15秒前
15秒前
多多发布了新的文献求助10
16秒前
16秒前
wanci应助八千采纳,获得10
17秒前
格格完成签到,获得积分10
18秒前
徐一一完成签到,获得积分10
20秒前
echo完成签到,获得积分10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271