亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical convolutional neural networks for fashion image classification

计算机科学 卷积神经网络 MNIST数据库 人工智能 分类 上下文图像分类 分类器(UML) 服装 模式识别(心理学) 等级制度 图像(数学) 机器学习 人工神经网络 数据挖掘 考古 经济 市场经济 历史
作者
Yian Seo,Kyung‐shik Shin
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:116: 328-339 被引量:174
标识
DOI:10.1016/j.eswa.2018.09.022
摘要

Abstract Deep learning can be applied in various business fields for better performance. Especially, fashion-related businesses have started to apply deep learning techniques on their e-commerce such as apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The most important backbone of these applications is the image classification task. However, apparel classification can be difficult due to its various apparel properties, and complexity in the depth of categorization. In other words, multi-class apparel classification can be hard and ambiguous to separate among similar classes. Here, we find the need of image classification reflecting hierarchical structure of apparel categories. In most of the previous studies, hierarchy has not been considered in image classification when using Convolutional Neural Networks (CNN), and not even in fashion image classification using other methodologies. In this paper, we propose to apply Hierarchical Convolutional Neural Networks (H CNN) on apparel classification. This study has contribution in that this is the first trial to apply hierarchical classification of apparel using CNN and has significance in that the proposed model is a knowledge embedded classifier outputting hierarchical information. We implement H CNN using VGGNet on Fashion-MNIST dataset. Results have shown that when using H CNN model, the loss gets decreased and the accuracy gets improved than the base model without hierarchical structure. We conclude that H CNN brings better performance in classifying apparel.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
田様应助科研通管家采纳,获得10
4秒前
5秒前
11秒前
JamesPei应助人间大厨神丶采纳,获得10
16秒前
19秒前
29秒前
37秒前
44秒前
Jihad给Jihad的求助进行了留言
48秒前
58秒前
1分钟前
1分钟前
魔幻的芳完成签到,获得积分10
1分钟前
火星上的宝马完成签到,获得积分10
1分钟前
悲凉的忆南完成签到,获得积分10
1分钟前
1分钟前
陈旧完成签到,获得积分10
1分钟前
欣欣子完成签到,获得积分10
1分钟前
sunstar完成签到,获得积分10
1分钟前
yxl完成签到,获得积分10
1分钟前
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
小洛完成签到 ,获得积分10
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
lsc完成签到,获得积分10
1分钟前
小fei完成签到,获得积分10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
时尚身影完成签到,获得积分10
1分钟前
1分钟前
流苏完成签到,获得积分0
2分钟前
流苏2完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
AAA完成签到,获得积分10
2分钟前
阳光萌萌完成签到,获得积分10
2分钟前
2分钟前
辉辉应助keke采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606566
求助须知:如何正确求助?哪些是违规求助? 4691031
关于积分的说明 14866783
捐赠科研通 4707425
什么是DOI,文献DOI怎么找? 2542899
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276