Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network

计算机科学 残余物 人工智能 特征提取 激光雷达 点云 编码器 卷积神经网络 特征(语言学) 模式识别(心理学) 目标检测 计算机视觉 数据挖掘 遥感 地理 操作系统 哲学 语言学 算法
作者
Jianfeng Huang,Xinchang Zhang,Qinchuan Xin,Ying Sun,Pengcheng Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:151: 91-105 被引量:212
标识
DOI:10.1016/j.isprsjprs.2019.02.019
摘要

Automated extraction of buildings from remotely sensed data is important for a wide range of applications but challenging due to difficulties in extracting semantic features from complex scenes like urban areas. The recently developed fully convolutional neural networks (FCNs) have shown to perform well on urban object extraction because of the outstanding feature learning and end-to-end pixel labeling abilities. The commonly used feature fusion or skip-connection refine modules of FCNs often overlook the problem of feature selection and could reduce the learning efficiency of the networks. In this paper, we develop an end-to-end trainable gated residual refinement network (GRRNet) that fuses high-resolution aerial images and LiDAR point clouds for building extraction. The modified residual learning network is applied as the encoder part of GRRNet to learn multi-level features from the fusion data and a gated feature labeling (GFL) unit is introduced to reduce unnecessary feature transmission and refine classification results. The proposed model - GRRNet is tested in a publicly available dataset with urban and suburban scenes. Comparison results illustrated that GRRNet has competitive building extraction performance in comparison with other approaches. The source code of the developed GRRNet is made publicly available for studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助桃妹采纳,获得10
刚刚
dew应助饿哭了塞采纳,获得10
1秒前
dew应助饿哭了塞采纳,获得10
1秒前
changping应助大胆灵竹采纳,获得10
1秒前
从容的代真应助饿哭了塞采纳,获得10
1秒前
勤劳的炼金师完成签到,获得积分10
2秒前
李白完成签到,获得积分10
2秒前
梦想发布了新的文献求助50
2秒前
2秒前
冷空气发布了新的文献求助10
2秒前
3秒前
zzx完成签到 ,获得积分20
3秒前
爆米花应助星星的梦采纳,获得10
3秒前
李健的粉丝团团长应助yhh采纳,获得10
3秒前
任ren完成签到,获得积分20
4秒前
画风湖湘卷完成签到 ,获得积分10
5秒前
dd发布了新的文献求助10
5秒前
6秒前
6秒前
lyyyy发布了新的文献求助10
6秒前
浮游应助有魅力的寄琴采纳,获得10
6秒前
CASLSD完成签到 ,获得积分10
6秒前
Karlie完成签到,获得积分10
7秒前
天天快乐应助一区哥采纳,获得10
8秒前
搜集达人应助顾年采纳,获得10
8秒前
屈屈完成签到,获得积分10
9秒前
zyb完成签到,获得积分10
9秒前
XIAJIN完成签到,获得积分10
9秒前
领导范儿应助阳阳采纳,获得10
9秒前
你坤叔公发布了新的文献求助10
10秒前
10秒前
渡月桥完成签到,获得积分10
11秒前
情怀应助ZhouYW采纳,获得10
11秒前
11秒前
李爱国应助宓珧采纳,获得10
11秒前
12秒前
ZZZ发布了新的文献求助10
13秒前
Zzz关注了科研通微信公众号
13秒前
13秒前
范琴琴完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193830
求助须知:如何正确求助?哪些是违规求助? 4376175
关于积分的说明 13628611
捐赠科研通 4231092
什么是DOI,文献DOI怎么找? 2320710
邀请新用户注册赠送积分活动 1319080
关于科研通互助平台的介绍 1269416