Polishing the crystal ball: mining multi-omics data in dermatomyositis

医学 计算机科学
作者
Rochelle L Castillo,Alisa N Femia
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:9 (5): 435-435 被引量:1
标识
DOI:10.21037/atm-20-5319
摘要

Precision medicine, which recognizes and upholds the uniqueness of each individual patient and the importance of discerning these inter-individual differences on a molecular scale in order to provide truly personalized medical care, is a revolutionary approach that relies on the discovery of clinically-relevant biomarkers derived from the massive amounts of data generated by epigenomic, genomic, transcriptomic, proteomic, microbiomic, and metabolomic studies, collectively known as multi-omics. If harnessed and mined appropriately with the help of ever-evolving computational and analytic methods, the collective data from omics studies has the potential to accelerate delivery of targeted medical treatment that maximizes benefit, minimizes harm, and eliminates the fortune-telling inextricably linked to the prevailing trial-and-error approach. For a disease such as dermatomyositis (DM), which is characterized by remarkable phenotypic heterogeneity and varying degrees of multi-organ involvement, an individualized approach that incorporates big data derived from multi-omics studies with the results of currently available serologic, histopathologic, radiologic, and electrophysiologic tests, and, most importantly, with clinical findings obtained from a thorough history and physical examination, has immense diagnostic, therapeutic, and prognostic value. In this review, we discuss omics-based research studies in DM and describe their practical applications and promising roles in guiding clinical decisions and optimizing patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
直率千愁应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
犹豫的归尘完成签到,获得积分10
5秒前
研友_VZG7GZ应助YFW采纳,获得10
5秒前
怡然行天完成签到,获得积分10
9秒前
CodeCraft应助Lee采纳,获得10
10秒前
12秒前
吴兰田完成签到,获得积分10
13秒前
下文献的蜉蝣完成签到 ,获得积分10
15秒前
16秒前
天真无招发布了新的文献求助10
16秒前
17秒前
吴兰田发布了新的文献求助20
19秒前
徐佳达完成签到,获得积分10
19秒前
19秒前
21秒前
书童发布了新的文献求助10
22秒前
2024论文计划完成签到,获得积分20
23秒前
风趣的芝麻完成签到 ,获得积分10
27秒前
Jasper应助334niubi666采纳,获得10
27秒前
迅速灵竹发布了新的文献求助10
28秒前
Kris完成签到,获得积分10
28秒前
天真无招完成签到,获得积分10
29秒前
南柯完成签到,获得积分10
34秒前
sby19完成签到 ,获得积分10
34秒前
37秒前
aertom完成签到,获得积分10
37秒前
科研1发布了新的文献求助10
37秒前
38秒前
Kaelyn发布了新的文献求助10
38秒前
陈嘻嘻嘻嘻完成签到,获得积分10
39秒前
334niubi666发布了新的文献求助10
40秒前
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999