量子点接触
弹道传导
材料科学
凝聚态物理
自旋电子学
量子隧道
量子线
物理
半导体
量子点
单壁碳纳米管的弹道传导
电子
纳米技术
量子阱
光电子学
量子力学
铁磁性
碳纳米管
纳米管
激光器
碳纳米管的力学性能
作者
A. Jouan,Gyanendra Singh,Edouard Lesne,Diogo C. Vaz,M. Bibes,A. Barthélémy,C. Ulysse,D. Stornaiuolo,M. Salluzzo,S. Hurand,J. Lesueur,C. Feuillet-Palma,N. Bergeal
标识
DOI:10.1038/s41928-020-0383-2
摘要
The electric-field effect control of two-dimensional electron gases (2-DEGs) has allowed nanoscale electron quantum transport to be explored in semiconductors. Structures based on transition metal oxides have electronic states that favour the emergence of novel quantum orders that are absent in conventional semiconductors and the 2-DEG formed at a LaAlO3/SrTiO3 interface—a structure in which superconductivity and spin–orbit coupling can coexist—is a promising platform to develop devices for spintronics and topological electronics. However, field-effect control of the properties of this interface at the nanoscale remains challenging. Here we show that a quantum point contact can be formed in a LaAlO3/SrTiO3 interface through electrostatic confinement of the 2-DEG using a split gate. Our device exhibits a quantized conductance due to ballistic transport in a controllable number of one-dimensional conducting channels. Under a magnetic field, the direct observation of the Zeeman splitting between spin-polarized bands allows the determination of the Landé g-factor, whose value differs strongly from that of the free electrons. Through source–drain voltage measurements, we also performed a spectroscopic investigation of the 3d energy levels inside the quantum point contact. The LaAlO3/SrTiO3 quantum point contact could potentially be used as a spectrometer to probe Majorana states in an oxide 2-DEG. A quantum point contact formed in the two-dimensional electron gas of a LaAlO3/SrTiO3 interface exhibits quantized conductance due to ballistic transport in a controllable number of one-dimensional conducting channels.
科研通智能强力驱动
Strongly Powered by AbleSci AI