Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information

计算机科学 机器学习 借记 图形 人工智能 人工神经网络 数据挖掘 理论计算机科学 心理学 认知科学
作者
Enyan Dai,Suhang Wang
标识
DOI:10.1145/3437963.3441752
摘要

Graph neural networks (GNNs) have shown great power in modeling graph structured data. However, similar to other machine learning models, GNNs may make predictions biased on protected sensitive attributes, e.g., skin color and gender. Because machine learning algorithms including GNNs are trained to reflect the distribution of the training data which often contains historical bias towards sensitive attributes. In addition, the discrimination in GNNs can be magnified by graph structures and the message-passing mechanism. As a result, the applications of GNNs in sensitive domains such as crime rate prediction would be largely limited. Though extensive studies of fair classification have been conducted on i.i.d data, methods to address the problem of discrimination on non-i.i.d data are rather limited. Furthermore, the practical scenario of sparse annotations in sensitive attributes is rarely considered in existing works. Therefore, we study the novel and important problem of learning fair GNNs with limited sensitive attribute information. FairGNN is proposed to eliminate the bias of GNNs whilst maintaining high node classification accuracy by leveraging graph structures and limited sensitive information. Our theoretical analysis shows that FairGNN can ensure the fairness of GNNs under mild conditions given limited nodes with known sensitive attributes. Extensive experiments on real-world datasets also demonstrate the effectiveness of FairGNN in debiasing and keeping high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Erintsai完成签到,获得积分10
刚刚
刚刚
难过山菡发布了新的文献求助10
刚刚
思源应助碧蓝的胡萝卜采纳,获得10
刚刚
晨风韵雨发布了新的文献求助10
刚刚
完美世界应助Three采纳,获得10
1秒前
杨杨发布了新的文献求助20
1秒前
FashionBoy应助科研通管家采纳,获得50
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
黑山羊完成签到,获得积分20
1秒前
大模型应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得20
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
烟花应助季秋十二采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
在水一方应助小林野采纳,获得10
2秒前
多吃青菜应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
充电宝应助北阳采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
墨白完成签到,获得积分10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
哎呀呀完成签到,获得积分10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426