Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information

计算机科学 机器学习 借记 图形 人工智能 人工神经网络 数据挖掘 理论计算机科学 心理学 认知科学
作者
Enyan Dai,Suhang Wang
标识
DOI:10.1145/3437963.3441752
摘要

Graph neural networks (GNNs) have shown great power in modeling graph structured data. However, similar to other machine learning models, GNNs may make predictions biased on protected sensitive attributes, e.g., skin color and gender. Because machine learning algorithms including GNNs are trained to reflect the distribution of the training data which often contains historical bias towards sensitive attributes. In addition, the discrimination in GNNs can be magnified by graph structures and the message-passing mechanism. As a result, the applications of GNNs in sensitive domains such as crime rate prediction would be largely limited. Though extensive studies of fair classification have been conducted on i.i.d data, methods to address the problem of discrimination on non-i.i.d data are rather limited. Furthermore, the practical scenario of sparse annotations in sensitive attributes is rarely considered in existing works. Therefore, we study the novel and important problem of learning fair GNNs with limited sensitive attribute information. FairGNN is proposed to eliminate the bias of GNNs whilst maintaining high node classification accuracy by leveraging graph structures and limited sensitive information. Our theoretical analysis shows that FairGNN can ensure the fairness of GNNs under mild conditions given limited nodes with known sensitive attributes. Extensive experiments on real-world datasets also demonstrate the effectiveness of FairGNN in debiasing and keeping high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙同学发布了新的文献求助10
刚刚
glycine发布了新的文献求助10
刚刚
善学以致用应助小欣采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
柯尔道南完成签到,获得积分10
2秒前
2秒前
kids发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
隐形曼青应助DDDD采纳,获得10
3秒前
zhuxi发布了新的文献求助10
3秒前
4秒前
加碘盐完成签到,获得积分10
4秒前
krkr完成签到,获得积分10
6秒前
姚琛完成签到 ,获得积分10
6秒前
nffl完成签到,获得积分10
6秒前
6秒前
Hyc28441711完成签到,获得积分10
6秒前
7秒前
JNL完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
科研通AI6应助NikolasZ采纳,获得10
7秒前
dyw发布了新的文献求助50
8秒前
YaRu应助守着她可好采纳,获得10
8秒前
kkkgj发布了新的文献求助10
8秒前
冷静若雁完成签到,获得积分10
8秒前
个性德天完成签到,获得积分10
9秒前
风筝有风完成签到,获得积分10
9秒前
9秒前
任成艳发布了新的文献求助10
9秒前
倒头睡不醒完成签到,获得积分20
9秒前
乐观的颦发布了新的文献求助10
10秒前
香蕉觅云应助现代的雪珍采纳,获得10
10秒前
Radarax发布了新的文献求助10
10秒前
能干的尔柳完成签到,获得积分10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066