计算机科学
人工智能
计算机视觉
基本事实
图像融合
图像质量
模式识别(心理学)
光学
极化(电化学)
物理
图像(数学)
融合
语言学
哲学
物理化学
化学
作者
Junchao Zhang,Jianbo Shao,Jianlai Chen,Degui Yang,Buge Liang,Rongguang Liang
出处
期刊:Optics Letters
[Optica Publishing Group]
日期:2020-02-10
卷期号:45 (6): 1507-1507
被引量:67
摘要
Image fusion is the key step to improve the performance of object detection in polarization images. We propose an unsupervised deep network to address the polarization image fusion issue. The network learns end-to-end mapping for fused images from intensity and degree of linear polarization images, without the ground truth of fused images. Customized architecture and loss function are designed to boost performance. Experimental results show that our proposed network outperforms other state-of-the-art methods in terms of visual quality and quantitative measurement.
科研通智能强力驱动
Strongly Powered by AbleSci AI