摘要
Angewandte ChemieVolume 111, Issue 4 p. 470-500 Aufsatz Bleomycin: Untersuchungen zu Synthese und Wirkungsmechanismus Dale L. Boger, Dale L. Boger [email protected] Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10 550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+ 1) 619-784-7550Search for more papers by this authorHui Cai, Hui Cai Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10 550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+ 1) 619-784-7550Search for more papers by this author Dale L. Boger, Dale L. Boger [email protected] Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10 550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+ 1) 619-784-7550Search for more papers by this authorHui Cai, Hui Cai Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10 550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+ 1) 619-784-7550Search for more papers by this author First published: February 15, 1999 https://doi.org/10.1002/(SICI)1521-3757(19990215)111:4<470::AID-ANGE470>3.0.CO;2-MCitations: 18AboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Stückweise entschlüsselt wurden die Feinheiten der Struktur und Funktion von Bleomycin A2 1, einem klinisch eingesetzten Antitumormittel, das seine biologische Wirkung über die Metallionen- und O2-abhängige, sequenzselektive Spaltung von DNA ausübt. Durch systematisches Modifizieren der Struktur von 1 war es möglich, die subtilen funktionellen Rollen der einzelnen Molekülteile und ihrer Substituenten für Effizienz, Selektivität und Präferenz (Doppelstrang- gegenüber Einzelstrang-DNA) der DNA-Spaltung aufzuklären. References 1 H. Umezawa, K. Maeda, T. Takeuchi, Y. Okami, J. Antibiot. 1966, 19, 200–209. CASPubMedWeb of Science®Google Scholar 2 Bleomycin: Current Status and New Developments (Hrsg.: S. K. Carter, S. T. Crooke, H. Umezawa), Academic Press, New York, 1978. Google Scholar 3 Bleomycin: Chemical, Biochemical and Biological Aspects (Hrsg.: S. M. Hecht), Springer, New York, 1979. 10.1007/978-1-4612-6191-9 Google Scholar 4 Bleomycin Chemotherapy (Hrsg.: B. I. Sikic, M. Rozencweig, S. K. Carter), Academic Press, Orlando, 1985. Google Scholar 5(a) A. Natrajan, S. M. Hecht in Molecular Aspects of Anticancer Drug-DNA Interactions, Vol. 2 (Hrsg.: S. Neidle, M. J. Waring), CRC Press, Boca Raton, 1994, S. 197–242; 10.1007/978-1-349-13330-7_5 Google Scholar(b) S. A. Kane, S. M. Hecht, Prog. Nucleic Acids Res. Mol. Biol. 1994, 49, 313–352. 10.1016/S0079-6603(08)60054-9 CASPubMedWeb of Science®Google Scholar 6 M. Ohno, M. Otsuka in Recent Progress in the Chemical Synthesis of Antibiotics (Hrsg.: G. Lukacs, M. Ohno), Springer, New York, 1990, S. 387–414. 10.1007/978-3-642-75617-7_11 Google Scholar 7 L. F. Povirk in Molecular Aspects of Anti-Cancer Drug Action (Hrsg.: S. Neidle, M. J. Waring), MacMillan, London, 1983, S. 157–181. 10.1007/978-1-349-06010-8_6 Google Scholar 8 J. S. Lazo, B. A. Chabner in Cancer Chemotherapy and Biotherapy: Principles and Practice, 2. Aufl. (Hrsg.: B. A. Chabner, D. L. Longo), Lippincott-Raven, Philadelphia, 1996, S. 379–393. Google Scholar 9 J. C. Dabrowiak, Adv. Inorg. Chem. 1982, 4, 69–113. CASWeb of Science®Google Scholar 10(a) J. Stubbe, J. W. Kozarich, Chem. Rev. 1987, 87, 1107–1136; 10.1021/cr00081a011 CASWeb of Science®Google Scholar(b) J. Stubbe, J. W. Kozarich, W. Wu, D. E. Van der wall, Acc. Chem. Res. 1996, 29, 322–330. 10.1021/ar9501333 CASWeb of Science®Google Scholar 11 S. M. Hecht, Acc. Chem. Res. 1986, 19, 383–391. 10.1021/ar00132a002 CASWeb of Science®Google Scholar 12 P. C. Dedon, I. H. Goldberg, Chem. Res. Toxicol. 1992, 5, 311–332. 10.1021/tx00027a001 CASPubMedWeb of Science®Google Scholar 13 D. H. Petering, R. W. Byrnes, W. E. Antholine, Chem. Biol. Interact. 1990, 73, 133–182. 10.1016/0009-2797(90)90001-4 CASPubMedWeb of Science®Google Scholar 14 Y. Sugiura, T. Takita, H. Umezawa, Met. Ions Biol. Syst. 1985, 19, 81–108. CASWeb of Science®Google Scholar 15 P. R. Twentyman, Pharmacol. Ther. 1984, 23, 417–441. 10.1016/0163-7258(83)90022-0 Web of Science®Google Scholar 16(a) H. Umezawa, Pure Appl. Chem. 1971, 28, 665–680; 10.1351/pac197128040665 CASPubMedGoogle Scholar(b) T. Takita, Y. Muraoka, T. Yoshioka, A. Fujii, K. Maeda, H. Umezawa, J. Antibiot. 1972, 25, 755–758; 10.7164/antibiotics.25.755 CASPubMedWeb of Science®Google Scholar(b) Y. Muraoka, A. Fujii, T. Yoshioka, T. Takita, H. Umezawa, J. Antibiot. 1977, 30, 178–181. 10.7164/antibiotics.30.178 CASPubMedWeb of Science®Google Scholar 17(a) T. Takita, Y. Muraoka, T. Nakatani, A. Fujii, Y. Umezawa, H. Naganawa, H. Umezawa, J. Antibiot. 1978, 31, 801–804; 10.7164/antibiotics.31.801 CASPubMedWeb of Science®Google Scholar(b) T. Fukuoka, Y. Muraoka, A. Fujii, H. Naganawa, T. Kakita, H. Umezawa, J. Antibiot. 1980, 33, 114–117. 10.7164/antibiotics.33.114 CASPubMedWeb of Science®Google Scholar 18(a) D. L. Boger, R. F. Menezes, T. Honda, Angew. Chem. 1993, 105, 310–311; 10.1002/ange.19931050240 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 1993, 32, 273–275; 10.1002/anie.199302731 Web of Science®Google Scholar(b) D. L. Boger, T. Honda, R. F. Menezes, S. L. Colletti, Q. Dang, W. Yang, J. Am. Chem. Soc. 1994, 116, 82–92; 10.1021/ja00080a010 Google Scholar(c) D. L. Boger, S. L. Colletti, T. Honda, R. F. Menezes, J. Am. Chem. Soc. 1994, 116, 5607–5618; 10.1021/ja00092a011 CASWeb of Science®Google Scholar(d) D. L. Boger, T. Honda, Q. Dang, J. Am. Chem. Soc. 1994, 116, 5619–5630; 10.1021/ja00092a012 CASWeb of Science®Google Scholar(e) D. L. Boger, T. Honda, R. F. Menezes; S. L. Colletti, J. Am. Chem. Soc. 1994, 116, 5631–5646; 10.1021/ja00092a013 CASWeb of Science®Google Scholar(f) D. L. Boger, T. Honda, J. Am. Chem. Soc. 1994, 116, 5647–5656. 10.1021/ja00092a014 CASWeb of Science®Google Scholar 19 R. Ishida, T. Takahashi, Biochem. Biophys. Res. Commun. 1975, 66, 1432–1438. 10.1016/0006-291X(75)90519-7 CASPubMedWeb of Science®Google Scholar 20(a) E. A. Sausville, J. Peisach, S. B. Horwitz, Biochem. Biophys. Res. Commun. 1976, 73, 814–822; 10.1016/0006-291X(76)90882-2 CASPubMedWeb of Science®Google Scholar(b) E. A. Sausville, R. W. Stein, J. Peisach, S. B. Horwitz, Biochemistry 1978, 17, 2740–2746; 10.1021/bi00607a007 CASPubMedWeb of Science®Google Scholar(c) R. M. Burger, J. Peisach, S. B. Horwitz, J. Biol. Chem. 1981, 256, 11633–11644; Google Scholar(d) R. M. Burger, T. A. Kent, S. B. Horwitz, E. Munck, J. Peisach, J. Biol. Chem. 1983, 258, 1559–1564. CASPubMedWeb of Science®Google Scholar 21 R. M. Burger, G. Tian, K. Drlica, J. Am. Chem. Soc. 1995, 117, 1167–1168. 10.1021/ja00108a049 CASWeb of Science®Google Scholar 22 A. D. D'Andrea, W. A. Haseltine, Proc. Natl. Acad. Sci. USA 1978, 75, 3608–3612. 10.1073/pnas.75.8.3608 CASPubMedWeb of Science®Google Scholar 23 M. Takeshita, A. P. Grollman, E. Ohtsubo, H. Ohtsubo, Proc. Natl. Acad. Sci. USA 1978, 75, 5983–5987. 10.1073/pnas.75.12.5983 CASPubMedWeb of Science®Google Scholar 24(a) G. M. Ehrenfeld, J. B. Shipley, D. C. Heimbrook, H. Sugiyama, E. C. Long, J. H. van Boom, G. A. van der Marcel, N. J. Oppenheimer, S. M. Hecht, Biochemistry 1987, 26, 931–942; 10.1021/bi00377a038 CASPubMedWeb of Science®Google Scholar(b) A. Natrajan, S. M. Hecht, G. A. van der Marcel, J. H. van Boom, J. Am. Chem. Soc. 1990, 112, 3997–4002; 10.1021/ja00166a042 CASWeb of Science®Google Scholar(c) E. C. Long, S. M. Hecht, G. A. van der Marcel, J. H. van Boom, J. Am. Chem. Soc. 1990, 112, 5272–5276; 10.1021/ja00169a040 CASWeb of Science®Google Scholar(d) B. J. Carter, K. S. Reddy, S. M. Hecht, Tetrahedron 1991, 47, 2463–2474. 10.1016/S0040-4020(01)81781-6 CASWeb of Science®Google Scholar 25 L. F. Povirk, Biochemistry 1979, 18, 3989–3995. 10.1021/bi00585a023 CASPubMedWeb of Science®Google Scholar 26(a) Y. Sugiura, T. Suzuki, J. Biol. Chem. 1982, 257, 10544–10546; CASPubMedWeb of Science®Google Scholar(b) J. Kuwahara, Y. Sugiura, Proc. Natl. Acad. Sci. USA 1988, 85, 2459–2463. 10.1073/pnas.85.8.2459 CASPubMedWeb of Science®Google Scholar 27 J. W. Sam, X.-J. Tang, J. Peisach, J. Am. Chem. Soc. 1994, 116, 5250–5256. 10.1021/ja00091a032 CASWeb of Science®Google Scholar 28 T. E. Westre, K. E. Loeb, J. M. Zaleski, B. Hedman, K. O. Hodgson, E. I. Solomon, J. Am. Chem. Soc. 1995, 117, 1309–1313. 10.1021/ja00109a014 CASWeb of Science®Google Scholar 29(a) H. Sugiyama, T. Tashiro, Y. Dannoue, T. Miwa, T. Matsuura, I. Saito, Tetrahedron Lett. 1989, 30, 7213–7216; 10.1016/S0040-4039(01)93937-1 CASWeb of Science®Google Scholar(b) H. Sugiyama, H. Kawabata, T. Fujiwara, Y. Dannoue, I. Saito, J. Am. Chem. Soc. 1990, 112, 5252–5257; 10.1021/ja00169a037 CASWeb of Science®Google Scholar(c) H. Sugiyama, T. Sera, Y. Dannoue, R. Marumoto, I. Saito, J. Am. Chem. Soc. 1991, 113, 2290–2295; 10.1021/ja00006a057 CASWeb of Science®Google Scholar(d) H. Sugiyama, K. Ohmori, I. Saito, J. Am. Chem. Soc. 1994, 116, 10326–10327. 10.1021/ja00101a073 CASWeb of Science®Google Scholar 30(a) J. C. Wu, J. W. Kozarich, J. Stubbe, Biochemistry 1985, 24, 7562–7568; 10.1021/bi00347a009 CASPubMedWeb of Science®Google Scholar(b) J. C. Wu, J. Stubbe, J. W. Kozarich, Biochemistry 1985, 24, 7569–7573; 10.1021/bi00347a010 CASPubMedWeb of Science®Google Scholar(c) J. W. Kozarich, L. Worth, Jr., B. L. Frank, D. F. Christner, D. E. Van der Wall, J. Stubbe, Science 1989, 245, 1396–1399; 10.1126/science.2476851 CASPubMedWeb of Science®Google Scholar(d) L. E. Rabow, J. Stubbe, J. W. Kozarich, J. Am. Chem. Soc. 1990, 112, 3196–3203; 10.1021/ja00164a049 CASWeb of Science®Google Scholar(e) L. E. Rabow, G. H. McGall, J. Stubbe, J. W. Kozarich, J. Am. Chem. Soc. 1990, 112, 3203–3208; 10.1021/ja00164a050 CASWeb of Science®Google Scholar(f) G. H. McGall, L. E. Rabow, G. W. Ashley, S. H. Wu, J. W. Kozarich, J. Stubbe, J. Am. Chem. Soc. 1992, 114, 4958–4967; 10.1021/ja00039a002 CASWeb of Science®Google Scholar(g) L. Worth, Jr., B. L. Frank, D. F. Christner, M. J. Absalon, J. Stubbe, J. W. Kozarich, Biochemistry 1993, 32, 2601–2609. 10.1021/bi00061a018 CASPubMedWeb of Science®Google Scholar 31(a) H. Sugiyama, R. E. Kikuskie, L.-H. Chang, L.-T. Ma, S. M. Hecht, G. A. van der Marcel, J. H. van Boom, J. Am. Chem. Soc. 1986, 108, 3852–3854; 10.1021/ja00273a063 CASWeb of Science®Google Scholar(b) H. Sugiyama, C. Xu, N. Murugesan, S. M. Hecht, Biochemistry 1988, 27, 58–67; 10.1021/bi00401a011 CASPubMedWeb of Science®Google Scholar(c) J. R. Barr, R. B. Van Atta, A. Natrajan, S. M. Hecht, J. Am. Chem. Soc. 1990, 112, 4058–4060. 10.1021/ja00166a064 CASWeb of Science®Google Scholar 32 R. M. Burger, K. Drlica, B. Birdsall, J. Biol. Chem. 1994, 269, 25978–25985. CASPubMedWeb of Science®Google Scholar 33(a) L. F. Povirk, W. Wubker, W. Kohnlein, F. Hutchinson, Nucleic Acids Res. 1977, 4, 3575–3580; 10.1093/nar/4.10.3573 Web of Science®Google Scholar(b) L. F. Povirk, C. W. Houlgrave, Biochemistry 1988, 27, 3850–3857; 10.1021/bi00410a049 CASPubMedWeb of Science®Google Scholar(c) L. F. Povirk, Y.-H. Han, R. J. Steighner, Biochemistry 1989, 28, 5808–5814; 10.1021/bi00440a016 CASPubMedWeb of Science®Google Scholar(d) R. J. Steighner, L. F. Povirk, Proc. Natl. Acad. Sci. USA 1990, 87, 8350–8354; 10.1073/pnas.87.21.8350 CASPubMedWeb of Science®Google Scholar(e) L. F. Povirk, M. J. F. Austin, Mutat. Res. 1991, 257, 127–143; 10.1016/0165-1110(91)90022-N CASPubMedWeb of Science®Google Scholar(f) R. A. Bennett, P. S. Swerdlow, L. F. Povirk, Biochemistry 1993, 32, 3188–3195. 10.1021/bi00063a034 CASPubMedWeb of Science®Google Scholar 34(a) R. S. Lloyd, C. W. Haidle, R. R. Hewitt, Cancer Res. 1978, 38, 3191–3196; CASPubMedWeb of Science®Google Scholar(b) R. S. Lloyd, C. W. Haidle, D. L. Robberson, Biochemistry 1978, 17, 1890–1896. 10.1021/bi00603a014 CASPubMedWeb of Science®Google Scholar 35 M. O. Bradley, K. W. Kohn, Nucleic Acids Res. 1979, 7, 793–804. 10.1093/nar/7.3.793 CASPubMedWeb of Science®Google Scholar 36(a) C. K. Mirabelli, C.-H. Huang, S. T. Crooke, Cancer Res. 1980, 40, 4173–4177; CASPubMedWeb of Science®Google Scholar(b) C. K. Mirabelli, C.-H. Huang, R. G. Fenwick, S. T. Crooke, Antimicrob. Agents Chemother. 1985, 27, 460–467. 10.1128/AAC.27.4.460 CASPubMedWeb of Science®Google Scholar 37 T. Lindahl, Mutat. Res. 1990, 238, 305–311. 10.1016/0165-1110(90)90022-4 CASPubMedWeb of Science®Google Scholar 38 B. Demple, L. Harrison, Annu. Rev. Biochem. 1994, 63, 915–948. 10.1146/annurev.bi.63.070194.004411 CASPubMedWeb of Science®Google Scholar 39(a) M. J. Absalon, J. W. Kozarich, J. Stubbe, Biochemistry 1995, 34, 2065–2075; 10.1021/bi00006a029 CASPubMedWeb of Science®Google Scholar(b) M. J. Absalon, W. Wu, J. W. Kozarich, J. Stubbe, Biochemistry 1995, 34, 2076–2086. 10.1021/bi00006a030 CASPubMedWeb of Science®Google Scholar 40 G. Brazilay, I. D. Hickson, Bioessays 1995, 17, 713–719. 10.1002/bies.950170808 PubMedWeb of Science®Google Scholar 41(a) J. A. Tainer, M. M. Thayer, R. P. Cunningham, Curr. Opin. Struct. Biol. 1995, 5, 20–26; 10.1016/0959-440X(95)80005-L CASPubMedWeb of Science®Google Scholar(b) T. P. Hilbert, R. J. Boorstein, H. C. Kung, P. H. Bolton, D. Xing, R. P. Cunningham, G. Teebor, Biochemistry 1996, 35, 2505–2511. 10.1021/bi952516e CASPubMedWeb of Science®Google Scholar 42(a) B. J. Carter, E. de Vroom, E. C. Long, G. A. van der Marcel, J. H. van Boom, S. M. Hecht, Proc. Natl. Acad. Sci. USA 1990, 87, 9373–9377; 10.1073/pnas.87.23.9373 CASPubMedWeb of Science®Google Scholar(b) C. E. Holmes, B. J. Carter, S. M. Hecht, Biochemistry 1993, 32, 4293–4307; 10.1021/bi00067a019 CASPubMedWeb of Science®Google Scholar(c) C. E. Holmes, B. J. Carter, S. M. Hecht, Biochemistry 1993, 32, 4293–4307; 10.1021/bi00067a019 CASPubMedWeb of Science®Google Scholar(d) S. M. Hecht, Bioconjug. Chem. 1994, 5, 513–526; 10.1021/bc00030a006 CASPubMedWeb of Science®Google Scholar(e) C. H. Holmes, A. T. Abraham, S. M. Hecht, C. Florentz, R. Giege, Nucleic Acids Res. 1996, 24, 3399–3406. 10.1093/nar/24.17.3399 CASPubMedWeb of Science®Google Scholar 43 R. S. Magliozzo, J. Peisach, M. R. Cirolo, Mol. Pharmacol. 1989, 35, 428–432. CASPubMedWeb of Science®Google Scholar 44(a) M. J. Absalon, C. R. Krishnamoorthy, G. McGall, J. W. Kozarich, J. Stubbe, Nucleic Acids Res. 1992, 20, 4179–4185; 10.1093/nar/20.16.4179 CASPubMedWeb of Science®Google Scholar(b) M. Bansal, J. S. Lee, J. Stubbe, J. W. Kozarich, Nucleic Acids Res. 1997, 25, 1836–1845; 10.1093/nar/25.9.1836 CASPubMedWeb of Science®Google Scholar(c) M. Bansal, J. Stubbe, J. W. Kozarich, Nucleic Acids Res. 1997, 25, 1846–1853. 10.1093/nar/25.9.1846 CASPubMedWeb of Science®Google Scholar 45(a) Deglycobleomycin A2: N. J. Oppenheimer, C. Chang, L.-H. Chang, G. Ehrenfeld, L. O. Rodriguez, S. M. Hecht, J. Biol. Chem. 1982, 257, 1606–1609; 10.1016/S0021-9258(19)68079-8 CASPubMedWeb of Science®Google Scholar(b) Y. Sugiura, T. Suzuki, M. Otsuka, S. Kobayashi, M. Ohno, T. Takita, H. Umezawa, J. Biol. Chem. 1983, 258, 1328–1336; 10.1016/S0021-9258(18)33197-1 CASPubMedWeb of Science®Google Scholar(c) Y. Sugiura, J. Kuwahara, T. Suzuki, FEBS Lett. 1985, 182, 39–42. 10.1016/0014-5793(85)81149-2 CASWeb of Science®Google Scholar(d) A. Kenani, G. Lamblin, J.-P. Henichart, Carbohydr. Res. 1988, 177, 81–89; 10.1016/0008-6215(88)85043-2 CASPubMedWeb of Science®Google Scholar(e) D. L. Boger, R. F. Menezes, W. Yang, Bioorg. Med. Chem. Lett. 1992, 2, 959–962. 10.1016/S0960-894X(00)80597-1 CASWeb of Science®Google Scholar 46 iso-Bleomycin A2: Y. Nakayama, M. Kunishima, S. Omoto, T. Takita, H. Umezawa, J. Antibiot. 1973, 26, 400–402. 10.7164/antibiotics.26.400 CASPubMedWeb of Science®Google Scholar 47 epi-Bleomycin A2: Y. Muraoka, H. Kobayashi, A. Fujii, M. Kunishima, T. Fujii, Y. Nakayama, T. Takita, H. Umezawa, J. Antibiot. 1976, 29, 853–856. 10.7164/antibiotics.29.853 PubMedWeb of Science®Google Scholar 48 Desamidobleomycin A2: H. Umezawa, S. Hori, T. Sawa, T. Yoshioka, T. Takeuchi, J. Antibiot. 1974, 27, 419–424. 10.7164/antibiotics.27.419 CASPubMedGoogle Scholar 49 Desamidobleomycin A2 und Depyruvamidobleomycin A2: Y. Sugiura, J. Am. Chem. Soc. 1980, 102, 5208–5215. 10.1021/ja00536a015 CASWeb of Science®Google Scholar 50 Decarbamoylbleomycin A2: H. Sugiyama, G. M. Ehrenfeld, J. B. Shipley, R. E. Kilkuskie, L.-H. Chang, S. M. Hecht, J. Nat. Prod. 1985, 48, 869–877. 10.1021/np50042a001 CASPubMedWeb of Science®Google Scholar 51(a) PEMH und iso-Bithiazolbleomycin A2: T. Morii, T. Matsuura, I. Saito, T. Suzuki, J. Kuwahara, Y. Sugiura, J. Am. Chem. Soc. 1986, 108, 7089–7094; 10.1021/ja00282a040 CASWeb of Science®Google Scholar(b) T. Morii, I. Saito, T. Matsuura, J. Kuwahara, Y. Sugiura, J. Am. Chem. Soc. 1987, 109, 938–939. 10.1021/ja00237a071 CASWeb of Science®Google Scholar 52(a) W. Wu, D. E. Vanderwall, S. M. Lui, X.-J. Tang, C. J. Turner, J. W. Kozarich, J. Stubbe, J. Am. Chem. Soc. 1996, 118, 1268–1280; 10.1021/ja9524964 CASWeb of Science®Google Scholar(b) W. Wu, D. E. Vanderwall, C. J. Turner, J. W. Kozarich, J. Stubbe, J. Am. Chem. Soc. 1996, 118, 1281–1294; 10.1021/ja952497w CASWeb of Science®Google Scholar(c) W. Wu, D. E. Vanderwall, J. Stubbe, J. W. Kozarich, C. J. Turner, J. Am. Chem. Soc. 1994, 116, 10843–10844; 10.1021/ja00102a083 CASWeb of Science®Google Scholar(d) D. E. Vanderwall, S. M. Lui, W. Wu, C. J. Turner, J. W. Kozarich, J. Stubbe, Chem. Biol. 1997, 4, 373–387; 10.1016/S1074-5521(97)90128-9 CASPubMedWeb of Science®Google Scholar(e) S. M. Lui, D. E. Vanderwall, W. Wu, X.-J. Tang, C. J. Turner, J. W. Kozarich, J. Stubbe, J. Am. Chem. Soc. 1997, 119, 9603–9613; 10.1021/ja963889l CASWeb of Science®Google Scholar(f) W. Wu, D. E. Vanderwall, S. Teramoto, S. M. Lui, S. Hoehn, X.-J. Tang, C. J. Turner, D. L. Boger, J. W. Kozarich, J. Stubbe, J. Am. Chem. Soc. 1998, 120, 2239–2250. 10.1021/ja972125i CASWeb of Science®Google Scholar 53(a) R. A. Manderville, J. F. Ellena, S. M. Hecht, J. Am. Chem. Soc. 1994, 116, 10851–10852; 10.1021/ja00102a087 CASWeb of Science®Google Scholar(b) R. A. Manderville, J. F. Ellena, S. M. Hecht, J. Am. Chem. Soc. 1995, 117, 7891–7903. 10.1021/ja00135a007 CASWeb of Science®Google Scholar 54(a) R. X. Xu, W. E. Antholine, D. H. Petering, J. Biol. Chem. 1992, 267, 944–949; CASPubMedWeb of Science®Google Scholar(b) Q. Mao, P. Fulmer, W. Li, E. F. De Rose, D. H. Petering, J. Biol. Chem. 1996, 271, 6185–6191; 10.1074/jbc.271.11.6185 CASPubMedWeb of Science®Google Scholar(c) J. D. Otvos, W. E. Antholine, S. Wehrli, D. H. Petering, Biochemistry 1996, 35, 1458–1465; 10.1021/bi951877r CASPubMedWeb of Science®Google Scholar(d) P. Fulmer, C. Zhao, W. Li, E. De Rose, W. E. Antholine, D. H. Petering, Biochemistry 1997, 36, 4367–4374; 10.1021/bi9625354 CASPubMedWeb of Science®Google Scholar(e) R. X. Xu, D. Nettesheim, J. D. Otvos, D. H. Petering, Biochemistry 1994, 33, 907–916. 10.1021/bi00170a009 CASPubMedWeb of Science®Google Scholar 55 A. M. Calafat, H. Won, L. G. Marzilli, J. Am. Chem. Soc. 1997, 119, 3656–3664. 10.1021/ja963392b CASWeb of Science®Google Scholar 56 T. E. Lehmann, L.-J. Ming, M. E. Rosen, L. Que, Jr., Biochemistry 1997, 36, 2807–2816. 10.1021/bi962748t CASPubMedWeb of Science®Google Scholar 57(a) J. Caceres-Cortes, H. Sugiyama, K. Ikudome, I. Saito, A. H.-J. Wang, Eur. J. Biochem. 1997, 244, 818–828; 10.1111/j.1432-1033.1997.00818.x CASPubMedWeb of Science®Google Scholar(b) J. Caceres-Cortes, H. Sugiyama, K. Ikudome, I. Saito, A. H.-J. Wang, Biochemistry 1997, 36, 9995–10005. 10.1021/bi9708951 CASPubMedWeb of Science®Google Scholar 58 Y. Yang, L. Huang, R. T. Pon, S.-F. Cheng, D.-K. Chang, J. W. Lown, Bioconjug. Chem. 1996, 7, 670–679. 10.1021/bc960065k CASPubMedWeb of Science®Google Scholar 59(a) J. D. Glickson, R. P. Pillai, T. T. Sakai, Proc. Natl. Acad. Sci. USA 1981, 78, 2967–2971; 10.1073/pnas.78.5.2967 CASPubMedWeb of Science®Google Scholar(b) M. P. Gamcsik, J. D. Glickson, G. Zon, J. Biomol. Struct. Dyn. 1990, 7, 1117–1133. 10.1080/07391102.1990.10508550 CASPubMedWeb of Science®Google Scholar 60(a) M. A. J. Akkerman, C. A. G. Haansnoot, C. W. Hilbers, Eur. J. Biochem. 1988, 173, 211–225; 10.1111/j.1432-1033.1988.tb13987.x CASPubMedWeb of Science®Google Scholar(b) M. A. J. Akkerman, E. W. J. F. Neijiman, S. S. Wijmenga, C. W. Hilbers, W. Bermel, J. Am. Chem. Soc. 1990, 112, 7462–7474. 10.1021/ja00177a003 CASWeb of Science®Google Scholar 61(a) N. J. Oppenheimer, L. O. Rodriguez, S. M. Hecht, Biochemistry 1979, 18, 3439–3445; 10.1021/bi00583a001 CASPubMedWeb of Science®Google Scholar(b) N. J. Oppenheimer, L. O. Rodriguez, S. M. Hecht, Proc. Natl. Acad. Sci. USA 1979, 76, 5616–5620; 10.1073/pnas.76.11.5616 CASPubMedWeb of Science®Google Scholar(c) G. M. Ehrenfeld, L. O. Rodriguez, S. M. Hecht, C. Chang, V. J. Basus, N. J. Oppenheimer, Biochemistry 1985, 24, 81–92. 10.1021/bi00322a013 CASPubMedWeb of Science®Google Scholar 62 D. M. Chen, T. T. Sakai, J. D. Glickson, D. J. Patel, Biochem. Biophys. Res. Commun. 1980, 92, 197–205. 10.1016/0006-291X(80)91539-9 CASPubMedWeb of Science®Google Scholar 63 H. Kurosaki, K. Hayashi, Y. Ishikawa, M. Goto, Chem. Lett. 1995, 691–692. Google Scholar 64 H. Urata, Y. Ueda, Y. Usami, M. Akagi, J. Am. Chem. Soc. 1993, 115, 7135–7138. 10.1021/ja00069a010 CASWeb of Science®Google Scholar 65 H. Hiroaki, T. Nakayama, M. Ikehara, S. Uesugi, Chem. Pharm. Bull. 1991, 39, 2780–2786. 10.1248/cpb.39.2780 CASPubMedWeb of Science®Google Scholar 66 M. Chien, A. P. Grollman, S. B. Horwitz, Biochemistry 1977, 16, 3641–3647. 10.1021/bi00635a021 CASWeb of Science®Google Scholar 67(a) N. J. Oppenheimer, L. O. Rodriguez, S. M. Hecht, Biochemistry 1980, 19, 4096–4103; 10.1021/bi00558a030 CASPubMedWeb of Science®Google Scholar(b) N. J. Oppenheimer, C. Chang, L. O. Rodriguez, S. M. Hecht, J. Biol. Chem. 1981, 256, 1514–1517; CASPubMedWeb of Science®Google Scholar(c) J. Kross, W. D. Henner, W. A. Haseltine, L. Rodriguez, M. D. Levin, S. M. Hecht, Biochemistry 1982, 21, 3711–3721. 10.1021/bi00258a029 CASPubMedWeb of Science®Google Scholar 68(a) S. J. Brown, S. E. Hudson, P. K. Mascharak, M. M. Olmstead, J. Am. Chem. Soc. 1989, 111, 6446–6448; 10.1021/ja00198a080 CASWeb of Science®Google Scholar(b) S. J. Brown, M. M. Olmstead, P. K. Mascharak, Inorg. Chem. 1990, 29, 3229–3234; 10.1021/ic00342a036 CASWeb of Science®Google Scholar(c) J. D. Tan, S. E. Hudson, S. J. Brown, M. M. Olmstead, P. K. Mascharak, J. Am. Chem. Soc. 1992, 114, 3841–3853; 10.1021/ja00036a036 CASWeb of Science®Google Scholar(d) E. Farinas, J. D. Tan, N. Baidya, P. K. Mascharak, J. Am. Chem. Soc. 1993, 115, 2996–2997; 10.1021/ja00060a066 CASWeb of Science®Google Scholar(e) R. J. Guajardo, S. E. Hudson, S. J. Brown, P. K. Mascharak, J. Am. Chem. Soc. 1993, 115, 7971–7977; 10.1021/ja00071a006 CASWeb of Science®Google Scholar(f) R. J. Guajardo, J. D. Tan, P. K. Mascharak, Inorg. Chem. 1994, 33, 2838–2840; 10.1021/ic00091a026 CASWeb of Science®Google Scholar(g) R. J. Guajardo, F. Chavez, E. T. Farinas, P. K. Mascharak, J. Am. Chem. Soc. 1995, 117, 3883–3884; 10.1021/ja00118a031 CASWeb of Science®Google Scholar(h) K. E. Loeb, J. M. Zaleski, T. W. Westre, R. J. Guajardo, P. K. Mascharak, B. Hedman, K. O. Hodgson, E. I. Solomon, J. Am. Chem. Soc. 1995, 117, 4545–4561; 10.1021/ja00121a013 CASWeb of Science®Google Scholar(i) E. T. Farinas, J. D. Tan, P. K. Mascharak, Inorg. Chem. 1996, 35, 2637–2643. 10.1021/ic9503139 CASPubMedWeb of Science®Google Scholar 69(a) R. X. Xu, W. E. Antholine, D. H. Petering, J. Biol. Chem. 1992, 267, 950–955; CASPubMedWeb of Science®Google Scholar(b) W. E. Antholine, J. S. Hyde, R. C. Sealy, D. H. Petering, J. Biol. Chem. 1984, 259, 4437–4440; 10.1016/S0021-9258(17)43065-1 CASPubMedWeb of Science®Google Scholar(c) J. C. Dabrowiak, M. Tsukayama, J. Am. Chem. Soc. 1981, 103, 7543–7550. 10.1021/ja00415a023 CASWeb of Science®Google Scholar 70 S. Takahashi, J. W. Sam, J. Peisach, D. L. Rousseau, J. Am. Chem. Soc. 1994, 116, 4408–4413. 10.1021/ja00089a032 CASWeb of Science®Google Scholar 71 A. Veselov, H. Sun, A. Sienkiewicz, H. Taylor, R. M. Burger, C. P. Scholes, J. Am. Chem. Soc. 1995, 117, 7508–7512. 10.1021/ja00133a023 CASWeb of Science®Google Scholar 72(a) B. C. Carter, V. S. Murty, K. S. Reddy, S.-N. Wang, S. M. Hecht, J. Biol. Chem. 1990, 265, 4193–4196; CASPubMedWeb of Science®Google Scholar(b) N. Hamamichi, A. Natrajan, S. M. Hecht, J. Am. Chem. Soc. 1992, 114, 6278–6291; 10.1021/ja00042a002 CASWeb of Science®Google Scholar(c) S. Kane, A. Natrajan, S. M. Hecht, J. Biol. Chem. 1994, 269, 10899–10904. CASPubMedWeb of Science®Google Scholar 73(a) A. Kittaka, Y. Sugano, M. Otsuka, M. Ohno, Tetrahedron 1988, 44, 2811–2820; 10.1016/S0040-4020(88)90017-8 CASWeb of Science®Google Scholar(b) M. Otsuka, T. Masuda, A. Haupt, M. Ohno, T. Shiraki, Y. Sugiura, K. Maeda, J. Am. Chem. Soc. 1990, 112, 838–845; 10.1021/ja00158a052 CASWeb of Science®Google Scholar(c) T. Owa, T. Sugiyama, M. Otsuka, M. Ohno, Tetrahedron Lett. 1990, 31, 6063–6066; 10.1016/S0040-4039(00)98029-8 CASWeb of Science®Google Scholar(d) T. Owa, A. Haupt, M. Otsuka, S. Kobayashi, N. Tomioka, A. Itai, M. Ohno, T. Shiraki, M. Uesugi, Y. Sugiura, Tetrahedron 1992, 48, 1193–1208; 10.1016/S0040-4020(01)90783-5 CASWeb of Science®Google Scholar(e) T. Sugiyama, M. Ohno, M. Shibasaki, M. Otsuka, Y. Sugiura, S. Kobayashi, K. Maeda, Heterocycles 1994, 37, 275–282; 10.3987/COM-93-S59 CASWeb of Science®Google Scholar(f) A. Kittaka, Y. Sugano, M. Otsuka, M. Ohno, Tetrahedron 1988, 44, 2821–2833. 10.1016/S0040-4020(88)90018-X CASWeb of Science®Google Scholar 74(a) K. Shinozuka, H. Morishita, T. Yamazaki, Y. Sugiura, H. Sawai, Tetrahedron Lett. 1991, 32, 6869–6872; 10.1016/0040-4039(91)80429-A CASWeb of Science®Google Scholar(b) J. Kohda, K. Shinozuka, H. Sawai, Tetrahedron Lett. 1995, 36, 5575–5578; 10.1016/0040-4039(95)01064-O CASWeb of Science®Google Scholar(c) T. Arai, K. Shinozuka, H. Sawai, Bioorg. Med. Chem. Lett. 1997, 7, 15–18. 10.1016/S0960-894X(96)00571-9 CASWeb of Science®Google Scholar 75(a) L. Huang, J. C. Quada, Jr., J. W. Lown, Tetrahedron Lett. 1994, 35, 5323–5326; 10.1016/S0040-4039(00)73490-3 CASWeb of Science®Google Scholar(b) L. Huang, J. W. Lown, Heterocycles 1995, 41, 1181–1185. 10.3987/COM-94-7017 CASWeb of Science®Google Scholar 76(a) M. J. McLean, A. Dar, M. J. Waring, J. Mol. Recognit. 1989, 1, 184–192; 10.1002/jmr.300010407 CASPubMedGoogle Scholar(b) K. Toshima, K. Ohta, A. Ohashi, T. Nakamura, M. Nakata, K. Tatsuta, S. Matsumura, J. Am. Chem. Soc. 1995, 117, 4822–4831; 10.1021/ja00122a012 CASWeb of Science®Google Scholar(c) C. Bailly, M. J. Waring, J. Am. Chem. Soc. 1995, 117, 7311–7316; 10.1021/ja00133a003 CASWeb of Science®Google Scholar(d) C. Bailly, A. Kenani, M. J. Waring, FEBS Lett. 1995, 372, 144–147; 10.1016/0014-5793(95)00968-F CASPubMedWeb of Science®Google Scholar(e) S. Jennewein, M. J. Waring, Nucleic Acids Res. 1997, 25, 1502–1509; 10.1093/nar/25.8.1502 CASPubMedWeb of Science®Google Scholar(f) C. Bailly, A. Kenani, M. J. Waring, Nucleic Acids Res. 1997, 25, 1516–1522. 10.1093/nar/25.8.1516 CASPubMedWeb of Science®Google Scholar 77(a) L. F. Povirk, M. Hogan, N. Dattagupta, Biochemistry 1979, 18, 96–101; 10.1021/bi00568a015 CASPubMedWeb of Science®Google Scholar(b) L. F. Povirk, M. Hogan, N. Dattagupta, M. Buechner, Biochemistry 1981, 20, 655–671; Google Scholar(c) T. Suzuki, J. Kuwahara, M. Goto, Y. Sugiura, Biochim. Biophys. Acta 1985, 824, 330–335; 10.1016/0167-4781(85)90039-9 CASPubMedWeb of Science®Google Scholar(d) D. Suh, L. F. Povirk, Biochemistry 1997, 36, 4248–4257. 10.1021/bi962957d CASPubMedWeb of Science®Google Scholar 78(a) A. Kenani, C. Bailly, N. Helbecque, J.-P. Catteau, R. Houssin, J.-L. Bernier, J.-P. Henichart, Biochem. J. 1988, 253, 497–504; 10.1042/bj2530497 CASPubMedWeb of Science®Google Scholar(b) A. Kenani, C. Bailly, R. Houssin, J. P. Henichart, Anticancer Drugs 1994, 5, 199–201. 10.1097/00001813-199404000-00010 PubMedWeb of Science®Google Scholar 79 M. Ohno, M. Otsuka, A. Kittaka, Y. Sugano, Y. Sugiura, T. Suzuki, J. Kuwahara, K. Umezawa, H. Umezawa, Int. J. Exp. Clin. Chemother. 1988, 1, 12. CASGoogle Scholar 80(a) R. E. Dickerson in Mechanisms of DNA Damage and Repair: Implications for Carcinogenesis and Risk Assessment in Basic Life Sciences (Hrsg.: M. G. Sini, L. Grossman), Plenum, New York, 1986, S. 245–255; 10.1007/978-1-4615-9462-8_25 Google Scholar(b) R. Kuroda, H. Satoh, M. Shinomiya, T. Watanabe, M. Otsuka, Nucleic Acids Res. 1995, 23, 1524–1530. 10.1093/nar/23.9.1524 CASPubMedWeb of Science®Google Scholar 81 J.-P. Henichart, J.-L. Bernier, N. Helbecque, R. Houssin, Nucleic Acids Res. 1985, 13, 6703–6717. 10.1093/nar/13.18.6703 CASPubMedWeb of Science®Google Scholar 82(a) T. Takita, Y. Umezawa, S. Saito, H. Morishima, H. Naganawa, H. Umezawa, T. Tsushiya, T. Miyake, S. Kageyama, S. Umezawa, Y. Muraoka, M. Suzuki, M. Otsuka, M. Narita, S. Kobayashi, M. Ohno, Tetrahedron Lett. 1982, 23, 521–524; 10.1016/S0040-4039(00)86878-1 CASWeb of Science®Google Scholar(b) T. Takita, Y. Umezawa, S. Saito, H. Morishima, H. Umezawa, Y. Muraoka, Y. Suzuki, M. Otsuka, S. Kobayashi, M. Ohno, Tetrahedron Lett. 1981, 22, 671–674; 10.1016/S0040-4039(01)92519-5 CASWeb of Science®Google Scholar(c) S. Saito, Y. Umezawa, H. Morishima, T. Takita, H. Umezawa, M. Narita, M. Otsuka, S. Kobayashi, M. Ohno, Tetrahedron Lett. 1982, 23, 529–532; 10.1016/S0040-4039(00)86880-X CASWeb of Science®Google Scholar(d) T. Tsuchiya, T. Miyake, S. Kageyama, S. Umezawa, H. Umezawa, T. Takita, Tetrahedron Lett. 1981, 22, 1413–1416; 10.1016/S0040-4039(01)90336-3 CASWeb of Science®Google Scholar(e) S. Saito, Y. Umezawa, T. Yoshioka, Y. Muraoka, T. Takita, H. Umezawa, Pept. Chem. 1983, 20, 133–138; Google Scholar(f) S. Saito, Y. Umezawa, T. Yoshioka, T. Takita, H. Umezawa, Y. Muraoka, J. Antibiot. 1983, 36, 92–95; 10.7164/antibiotics.36.92 CASPubMedWeb of Science®Google Scholar(g) M. Otsuka, M. Narita, M. Yoshida, S. Kobayashi, M. Ohno, Y. Umezawa, H. Morishima, S. Saito, T. Takita, H. Umezawa, Chem. Pharm. Bull. 1985, 33, 520–526; 10.1248/cpb.33.520 CASPubMedWeb of Science®Google Scholar(h) T. Miyake, T. Tsuchiya, S. Umezawa, S. Saito, H. Umezawa, Bull. Chem. Soc. Jpn. 1986, 59, 1387–1395. 10.1246/bcsj.59.1387 CASWeb of Science®Google Scholar 83(a) Y. Aoyagi, K. Katano, H. Suguna, J. Primeau, L.-H. Chang, S. M. Hecht, J. Am. Chem. Soc. 1982, 104, 5537–5538; 10.1021/ja00384a067 CASWeb of Science®Google Scholar(b) Y. Aoyagi, H. Suguna, N. Murugesan, G. M. Ehrenfeld, L.-H. Chang, T. Ohgi, M. S. Shekhani, M. P. Kirkup, S. M. Hecht, J. Am. Chem. Soc. 1982, 104, 5237–5239; 10.1021/ja00383a045 CASWeb of Science®Google Scholar(c) V. Pozsgay, T. Ohgi, S. M. Hecht, J. Org. Chem. 1981, 46, 3761–3763; 10.1021/jo00331a048 CASGoogle Scholar(d) K. Katano, P.-I. Chang, A. Millar, V. Pozsgay, D. K. Minster, T. Ohgi, S. M. Hecht, J. Org. Chem. 1985, 50, 5807–5815. 10.1021/jo00350a073 CASWeb of Science®Google Scholar 84(a) D. L. Boger, Q. Dang, J. Org. Chem. 1992, 57, 1631–1633; 10.1021/jo00032a001 CASWeb of Science®Google Scholar(b) D. L. Boger, W. Yang, Bioorg. Med. Chem. Lett. 1992, 2, 1649–1654. 10.1016/S0960-894X(00)80449-7 CASWeb of Science®Google Scholar 85(a) Y. Iitaka, H. Nakamura, T. Nakatani, Y. Muraoka, A. Fujii, T. Takita, H. Umezawa, J. Antibiot. 1978, 31, 1070–1072; 10.7164/antibiotics.31.1070 CASPubMedWeb of Science®Google Scholar(b) T. Takita, Y. Muraoka, T. Nakatani, A. Fujii, Y. Iitaka, H. Umezawa, J. Antibiot. 1978, 31, 1073–1077. 10.7164/antibiotics.31.1073 CASPubMedWeb of Science®Google Scholar 86(a) Hetero Diels-Alder Methodology in Organic Synthesis (Hrsg.: D. L. Boger, S. M. Weinreb), Academic Press, San Diego, 1987; Google Scholar(b) D. L. Boger, Tetrahedron 1983, 39, 2869–2939; 10.1016/S0040-4020(01)92154-4 CASWeb of Science®Google Scholar(c) D. L. Boger, Chem. Rev. 1986, 86, 781–793; 10.1021/cr00075a004 CASWeb of Science®Google Scholar(d) D. L. Boger, M. Patel, Prog. Heterocycl. Chem. 1989, 1, 30–64; 10.1016/B978-0-08-037045-3.50007-5 CASGoogle Scholar(e) D. L. Boger, Bull. Soc. Chim. Belg. 1990, 99, 599–615; 10.1002/bscb.19900990902 CASWeb of Science®Google Scholar(f) D. L. Boger, Chemtracts: Org. Chem. 1996, 9, 149–189. CASGoogle Scholar 87(a) D. L. Boger, Q. Dang Tetrahedron 1988, 44, 3379; 10.1016/S0040-4020(01)85973-1 CASWeb of Science®Google Scholar(b) D. L. Boger, M. J. Kochanny, J. Org. Chem. 1994, 59, 4950–4955. 10.1021/jo00096a044 CASWeb of Science®Google Scholar 88 D. L. Boger, T. Honda, Tetrahedron Lett. 1993, 34, 1567–1570. 10.1016/0040-4039(93)85008-K CASWeb of Science®Google Scholar 89 D. L. Boger, R. F. Menezes, J. Org. Chem. 1992, 57, 4331–4333. 10.1021/jo00042a003 CASWeb of Science®Google Scholar 90 T. Owa, M. Otsuka, M. Ohno, Chem. Lett. 1988, 1873–1874. Google Scholar 91 D. A. Evans, A. E. Weber, J. Am. Chem. Soc. 1986, 108, 6757–6761. 10.1021/ja00281a049 CASWeb of Science®Google Scholar 92 T. T. Sakai, J. M. Riordan, T. E. Booth, J. D. Glickson, J. Med. Chem. 1981, 24, 279–285. 10.1021/jm00135a008 CASPubMedWeb of Science®Google Scholar 93 H. Kasai, H. Naganawa, T. Takita, H. Umezawa, J. Antibiot. 1978, 31, 1316–1320. 10.7164/antibiotics.31.1316 CASPubMedWeb of Science®Google Scholar 94 S. N. Roy, G. A. Orr, F. Brewer, S. B. Horwitz, Cancer. Res. 1981, 41, 4471–4477. CASPubMedWeb of Science®Google Scholar 95 P. Sieber, B. Riniker, Tetrahedron Lett. 1987, 28, 6031–6034. 10.1016/S0040-4039(00)96856-4 CASWeb of Science®Google Scholar 96 J. B. Shipley, S. M. Hecht, Chem. Res. Toxicol. 1988, 1, 25–27. 10.1021/tx00001a004 CASPubMedWeb of Science®Google Scholar 97 D. L. Boger, S. Teramoto, J. Zhou, J. Am. Chem. Soc. 1995, 117, 7344–7356. 10.1021/ja00133a008 CASWeb of Science®Google Scholar 98 D. L. Boger, S. Teramoto, H. Cai, Bioorg. Med. Chem. 1996, 4, 179–193. 10.1016/0968-0896(95)00183-2 CASPubMedWeb of Science®Google Scholar 99 Rückblickend sind die zuletzt genannten Beobachtungen von Mascharak besonders interessant, wenn auch bei oberflächlicher Betrachtung seltsam. Sie beziehen die C4-Aminogruppe, die sich bei den Strukturuntersuchungen von Stubbe et al. als entscheidend erwiesen hat und in Abschnitt 3.2.8 detailliert erörtert wurde, nicht mit ein. Das Pyrimidin-N3-Atom des Bleomycins bleibt aber H-Brücken-Acceptor für die C2-Aminogruppe des Guanins an der Spaltstelle. Es ist denkbar, daß eine verringerte Guaninspaltungs-selektivität resultiert, wenn statt zweier nur eine H-Brücken gebildet werden. Google Scholar 100 D. L. Boger, S. Teramoto, T. Honda, J. Zhou, J. Am. Chem. Soc. 1995, 117, 7338–7343. 10.1021/ja00133a007 CASWeb of Science®Google Scholar 101 D. L. Boger, T. M. Ramsey, H. Cai, Bioorg. Med. Chem. 1996, 4, 195–207. 10.1016/0968-0896(95)00184-0 CASPubMedWeb of Science®Google Scholar 102 D. L. Boger, R. F. Menezes, Q. Dang, J. Org. Chem. 1992, 57, 4333–4336. 10.1021/jo00042a004 CASWeb of Science®Google Scholar 103(a) C. Nishimura, N. Tanaka, H. Suzuki, N. Tanaka, Biochemistry 1987, 26, 1547; 10.1021/bi00380a013 Web of Science®Google Scholar(b) C. Nishimura, H. Suzuki, N. Tanaka, H. Yamaguchi, Biochem. Biophys. Res. Commun. 1989, 163, 788–796. 10.1016/0006-291X(89)92291-2 CASPubMedWeb of Science®Google Scholar 104(a) S. M. Sebti, J. C. Deleon, J. S. Lazo, Biochemistry 1987, 26, 4213–4219; 10.1021/bi00388a006 CASPubMedWeb of Science®Google Scholar(b) S. M. Sebti, J. E. Mignano, J. P. Jani, S. Srimatkandada, J. S. Lazo, Biochemistry 1989, 28, 6544–6548. 10.1021/bi00442a003 CASPubMedWeb of Science®Google Scholar 105 D. L. Boger, T. M. Ramsey, H. Cai, S. T. Hoehn, J. W. Kozarich, J. Stubbe, J. Am. Chem. Soc. 1998, 120, 53–65. 10.1021/ja971889v CASWeb of Science®Google Scholar 106 K. P. Nightingale, K. R. Fox, Nucleic Acids Res. 1993, 21, 2549–2555. 10.1093/nar/21.11.2549 CASPubMedWeb of Science®Google Scholar 107(a) R. E. Kilkuskie, H. Suguna, B. Yellin, N. Murugesan, S. M. Hecht, J. Am. Chem. Soc. 1985, 107, 260–261; 10.1021/ja00287a052 CASWeb of Science®Google Scholar(b) D. C. Heimbrook, R. L. Mulholland, Jr., S. M. Hecht, J. Am. Chem. Soc. 1986, 108, 7839–7840. 10.1021/ja00284a061 CASPubMedWeb of Science®Google Scholar 108 D. L. Boger, R. F. Menezes, Q. Dang, W. Yang, Bioorg. Med. Chem. Lett. 1992, 2, 261–266. 10.1016/S0960-894X(01)81076-3 CASWeb of Science®Google Scholar 109(a) D. L. Boger, T. M. Ramsey, H. Cai, S. T. Hoehn, J. Stubbe, J. Am. Chem. Soc. 1998, 120, 9149–9158; 10.1021/ja9816640 CASWeb of Science®Google Scholar(b) D. L. Boger, S. L. Colletti, S. Teramoto, T. M. Ramsey, J. Zhou, Bioorg. Med. Chem. 1995, 3, 1281–1295. 10.1016/0968-0896(95)00113-U CASPubMedWeb of Science®Google Scholar 110 D. L. Boger, T. M. Ramsey, H. Cai, S. T. Hoehn, J. Stubbe, J. Am. Chem. Soc. 1998, 120, 9139–9148. 10.1021/ja9816638 CASWeb of Science®Google Scholar 111(a) M. Vasquez, G. Nemethy, H. Scheraga, Macromolecules 1983, 16, 1043–1049; 10.1021/ma00241a004 CASWeb of Science®Google Scholar(b) S. S. Zimmerman, M. S. Pottle, G. Nemethy, H. Scheraga, Macromolecules 1977, 10, 1–9. 10.1021/ma60055a001 CASPubMedWeb of Science®Google Scholar 112 D. L. Boger, S. Teramoto, H. Cai, Bioorg. Med. Chem. 1997, 5, 1577–1589. 10.1016/S0968-0896(97)00107-7 CASPubMedWeb of Science®Google Scholar Citing Literature Volume111, Issue4February 15, 1999Pages 470-500 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation