控制理论(社会学)
稳健性(进化)
斯图尔特站台
李雅普诺夫函数
隔振
计算机科学
振动
控制器(灌溉)
人工神经网络
鲁棒控制
有界函数
Lyapunov稳定性
控制系统
数学
工程类
人工智能
非线性系统
物理
控制(管理)
数学分析
化学
生物
生物化学
运动学
经典力学
量子力学
农学
电气工程
基因
作者
Jia Ma,Tao Yang,Zeng‐Guang Hou,Min Tan
标识
DOI:10.1109/robio.2009.4913245
摘要
To solve the control problem of a Stewart platform with unknown dynamics for multiple degree-of-freedom (DOF) active vibration isolation, an adaptive radial basis function neural network(RBFNN) controller is developed. The RBFNN is employed to approximate the unknown dynamics of the system. And an on-line tuning rule for the parameters of the RBFNN is given based on the e1-modification and gradient algorithms. Meanwhile, a sliding mode control term is incorporated to further improve the robustness of the whole controller against external vibrations. In the presence of bounded vibrations, the uniformly ultimately boundedness of the filter error and the estimation errors of the RBFNN parameters can be guaranteed by the Lyapunov theory. Finally, simulation results demonstrate the proposed controller can effectively attenuate external low frequency vibrations in all six DOF.
科研通智能强力驱动
Strongly Powered by AbleSci AI