Current Issues in the Use of fMRI-Based Neurofeedback to Relieve Psychiatric Symptoms

神经反射 精神分裂症(面向对象编程) 神经影像学 心理学 大脑活动与冥想 精神科 上瘾 功能磁共振成像 重性抑郁障碍 神经科学 医学 临床心理学 认知 脑电图
作者
Thomas Fovet,Renaud Jardri,David E.J. Linden
出处
期刊:Current Pharmaceutical Design [Bentham Science]
卷期号:21 (23): 3384-3394 被引量:46
标识
DOI:10.2174/1381612821666150619092540
摘要

fMRI-based neurofeedback (fMRI-NF) is a non-invasive technique that allows participants to achieve control of their own brain activity using the real-time feedback of the activity (measured indirectly based on the BOLD signal) of a particular brain region or network. The feasibility of fMRI-NF in healthy subjects has been documented for a variety of brain areas and neural systems, and this technique has also been proposed for the treatment of psychiatric disorders in recent years. Through a systematic review of the scientific literature this paper probes the rationale and expected applications of fMRI-NF in psychiatry, discusses issues that must be addressed in the use of this technique to treat mental disorders. Six relevant references and five ongoing studies were identified according to our inclusion criteria. These studies show that in most psychiatric disorders (major depressive disorder, schizophrenia, personality disorders, addiction), patients are able to learn voluntary control of the neuronal activity of the targeted brain region(s). Interestingly, in some cases, this learning is associated with clinical improvement, showing that fMRI-NF can potentially be developed into a therapeutic tool. However, only low-level evidence is available to support the use of this relatively new technique in clinical practice. Notably, no randomized, controlled trial is currently available in this field of research. Finally, methodological issues and clinical perspectives (especially the potential use of pattern recognition in fMRI-NF protocols) are discussed. Keywords: Machine learning, neurofeedback, pattern recognition, psychiatric disorder, real-time fMRI, self-efficacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摸鱼人完成签到,获得积分10
1秒前
2秒前
研友_nVNBVn发布了新的文献求助30
2秒前
BYN完成签到 ,获得积分10
2秒前
维生素完成签到 ,获得积分10
3秒前
沐沐汐完成签到 ,获得积分10
3秒前
俭朴从安完成签到,获得积分10
3秒前
xuebinxu完成签到 ,获得积分20
3秒前
无限师完成签到,获得积分10
3秒前
可可完成签到,获得积分10
4秒前
延陵君完成签到,获得积分0
4秒前
SciGPT应助听风雨采纳,获得10
5秒前
活力沧海完成签到,获得积分10
6秒前
_Forelsket_完成签到,获得积分10
6秒前
6秒前
mxtsusan完成签到,获得积分10
6秒前
7秒前
coollzl完成签到 ,获得积分10
7秒前
牛马完成签到,获得积分10
8秒前
Cloudyyy完成签到,获得积分10
8秒前
8秒前
司马绮山完成签到,获得积分10
8秒前
huihui265发布了新的文献求助10
8秒前
9秒前
puzhongjiMiQ完成签到,获得积分10
9秒前
比格大王完成签到 ,获得积分10
11秒前
卿卿完成签到 ,获得积分10
11秒前
11秒前
夏艳平完成签到 ,获得积分10
11秒前
puzhongjiMiQ发布了新的文献求助10
11秒前
caopeili完成签到 ,获得积分10
11秒前
Cloudyyy发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
菠萝汁完成签到,获得积分10
12秒前
zpl完成签到 ,获得积分10
13秒前
13秒前
ww完成签到,获得积分10
14秒前
amber完成签到,获得积分10
14秒前
biofresh完成签到,获得积分10
14秒前
DODO完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664846
求助须知:如何正确求助?哪些是违规求助? 4871596
关于积分的说明 15109131
捐赠科研通 4823659
什么是DOI,文献DOI怎么找? 2582486
邀请新用户注册赠送积分活动 1536484
关于科研通互助平台的介绍 1495036