Current Issues in the Use of fMRI-Based Neurofeedback to Relieve Psychiatric Symptoms

神经反射 精神分裂症(面向对象编程) 神经影像学 心理学 大脑活动与冥想 精神科 上瘾 功能磁共振成像 重性抑郁障碍 神经科学 医学 临床心理学 认知 脑电图
作者
Thomas Fovet,Renaud Jardri,David E.J. Linden
出处
期刊:Current Pharmaceutical Design [Bentham Science]
卷期号:21 (23): 3384-3394 被引量:46
标识
DOI:10.2174/1381612821666150619092540
摘要

fMRI-based neurofeedback (fMRI-NF) is a non-invasive technique that allows participants to achieve control of their own brain activity using the real-time feedback of the activity (measured indirectly based on the BOLD signal) of a particular brain region or network. The feasibility of fMRI-NF in healthy subjects has been documented for a variety of brain areas and neural systems, and this technique has also been proposed for the treatment of psychiatric disorders in recent years. Through a systematic review of the scientific literature this paper probes the rationale and expected applications of fMRI-NF in psychiatry, discusses issues that must be addressed in the use of this technique to treat mental disorders. Six relevant references and five ongoing studies were identified according to our inclusion criteria. These studies show that in most psychiatric disorders (major depressive disorder, schizophrenia, personality disorders, addiction), patients are able to learn voluntary control of the neuronal activity of the targeted brain region(s). Interestingly, in some cases, this learning is associated with clinical improvement, showing that fMRI-NF can potentially be developed into a therapeutic tool. However, only low-level evidence is available to support the use of this relatively new technique in clinical practice. Notably, no randomized, controlled trial is currently available in this field of research. Finally, methodological issues and clinical perspectives (especially the potential use of pattern recognition in fMRI-NF protocols) are discussed. Keywords: Machine learning, neurofeedback, pattern recognition, psychiatric disorder, real-time fMRI, self-efficacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助高磊采纳,获得10
1秒前
李爱国应助晴晴晴采纳,获得30
2秒前
3秒前
ding应助summer采纳,获得10
4秒前
Silole发布了新的文献求助10
5秒前
7秒前
lalallaal完成签到,获得积分20
7秒前
陈独秀完成签到,获得积分10
8秒前
研友_38K3A8发布了新的文献求助10
8秒前
彳亍完成签到 ,获得积分10
9秒前
9秒前
wawaeryu发布了新的文献求助10
9秒前
10秒前
小仙女212发布了新的文献求助10
12秒前
13秒前
科研通AI2S应助momo采纳,获得10
13秒前
maker发布了新的文献求助10
13秒前
丘比特应助sivan采纳,获得10
14秒前
高磊完成签到,获得积分20
16秒前
高磊发布了新的文献求助10
18秒前
olofmeister发布了新的文献求助10
19秒前
zx发布了新的文献求助10
19秒前
20秒前
研友_38K3A8完成签到 ,获得积分10
20秒前
英俊的铭应助叶子采纳,获得10
22秒前
23秒前
25秒前
Akim应助神勇盼晴采纳,获得10
25秒前
毛豆应助zhouqy8采纳,获得20
25秒前
小晚风完成签到,获得积分10
26秒前
26秒前
今后应助芝衿采纳,获得10
27秒前
28秒前
28秒前
我鬼混回来了完成签到 ,获得积分10
28秒前
30秒前
彭凯发布了新的文献求助10
30秒前
生动的骁发布了新的文献求助10
31秒前
LilyChen完成签到,获得积分10
33秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416294
求助须知:如何正确求助?哪些是违规求助? 3018217
关于积分的说明 8883350
捐赠科研通 2705583
什么是DOI,文献DOI怎么找? 1483717
科研通“疑难数据库(出版商)”最低求助积分说明 685787
邀请新用户注册赠送积分活动 680931