氧化还原
过渡金属
阴极
锂(药物)
钠
离子
钠离子电池
电池(电)
材料科学
无机化学
金属
电化学
化学
化学物理
纳米技术
物理化学
物理
电极
冶金
热力学
催化作用
法拉第效率
功率(物理)
有机化学
生物化学
内分泌学
医学
作者
Yūsuke Nanba,Tatsumi Iwao,Benoît Mortemard de Boisse,Wenwen Zhao,Eiji Hosono,Daisuke Asakura,Hideharu Niwa,Hisao Kiuchi,Jun Miyawaki,Yoshihisa Harada,Masashi Okubo,Atsuo Yamada
标识
DOI:10.1021/acs.chemmater.5b04289
摘要
Raising the operating potential of the cathode materials in sodium-ion batteries is a crucial challenge if they are to outperform state-of-the-art lithium-ion batteries. Although the layered transition metal oxides, NaMO2 (M: transition metal), are the most promising cathode materials owing to their high theoretical capacity with much more stable nature than Li1–xMO2 system, factors influencing the redox potential have not yet been fully understood. Here, we identify redox potential paradox, E(Ni3+/Ni2+) > E(Ni4+/Ni3+), in an identical structural framework, namely, NaTi4+0.5Ni2+0.5O2 and NaFe3+0.5Ni3+0.5O2, which is induced by transition of the oxides from Mott–Hubbard to negative charge-transfer regimes. The origin of the unusually low E(Ni4+/Ni3+) is the surprisingly large contribution (over 80%) of oxygen orbital to the redox reaction, of which the primary effect on the electrochemical property is demonstrated for the first time, providing a firm platform to design better cathodes for advanced sodium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI