FKBP公司
肽基脯氨酰异构酶
亲环素
顺反异构体
脯氨酸异构酶
异构酶
亲环素A
生物
伴侣(临床)
生物化学
蛋白质折叠
蛋白质二硫键异构酶
突变体
细胞生物学
热休克蛋白
化学
针脚1
分子生物学
酶
病理
基因
医学
作者
Sven F. Göthel,Mohamed A. Marahiel
标识
DOI:10.1007/s000180050299
摘要
Cyclosporine A therapy for prophylaxis against graft rejection revolutionized human organ transplantation. The immunosuppressant drugs cyclosporin A (CsA), FK506 and rapamycin block T-cell activation by interfering with the signal transduction pathway. The target proteins for CsA and FK506 were found to be cyclophilins and FK506-binding proteins, (FKBPs), respectively. They are unrelated in primary sequence, although both are peptidyl-prolyl cis-trans isomerases catalyzing the interconversion of peptidylprolyl imide bonds in peptide and protein substrates. However, the prolyl isomerase activity of these proteins is not essential for their immunosuppressive effects. Instead, the specific surfaces of the cyclophilin-CsA and FKBP-FK506 complexes mediate the immunosuppressive action. Moreover, the natural cellular functions of all but a few remain elusive. In some cases it could be demonstrated that prolyl isomerization is the rate-limiting step in protein folding in vitro, but many knockout mutants of single and multiple prolyl isomerases were viable with no detectable phenotype. Even though a direct requirement for in vivo protein folding could not be demonstrated, some important natural substrates of the prolyl isomerases are now known, and they demonstrate the great variety of prolyl isomerization functions in the living cell: (i) A human cyclophilin binds to the Gag polyprotein of the human immunodeficiency virus-1 (HIV-1) virion and was found to be essential for infection with HIV to occur, probably by removal of the virion coat. (ii) Together with heat shock protein (HSP) 90, a member of the chaperone family, high molecular weight cyclophilins and FKBPs bind and activate steroid receptors. This example also demonstrates that prolyl isomerases act together with other folding enzymes, for example the chaperones, and protein disulfide isomerases. (iii) An FKBP was found to act as a modulator of an intracellular calcium release channel. (iv) Along with the cyclophilins and FKBPs, a third class of prolyl isomerases exist, the parvulins. The human parvulin homologue Pin1 is a mitotic regulator essential for the G2/M transition of the eukaryotic cell cycle. These findings place proline isomerases at the intersection of protein folding, signal transduction, trafficking, assembly and cell cycle regulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI