Anaerobic digestion (AD) is the most comprehended process to stabilise the waste biomass efficiently and to obtain bioenergy. The AD starts with the hydrolysis process, where the major liability is the action of inhibitors during the hydrolysis process. The biomass pretreatment preceding anaerobic digestion is obligatory to improve feedstock biodegradability for enhanced biogas generation. It can be prevailed by the application of various pretreatment processes. This review explains the major inhibiting compounds and their formation during hydrolysis that affect the efficiency of anaerobic digestion and the benefits of the physico-chemical pretreatment (PCP) method for enhancing hydrolysis in the digestion of waste biomass. The synergistic effect of PCP on macromolecular release, liquefaction and biodegradability were presented. The feasibility of the pretreatment process was evaluated in terms of energy and cost assessment for pilot scale implementation. The outcome of this review reveals that the physico-chemical process is one of the best pretreatment methods to enhance anaerobic digestion by optimising various parameters and increasing the solubilization by about 90%. The thermochemical pretreatment at lower temperature (<100) increases the net energy yield. The solubilization of waste biomass in terms of macromolecular release and liquefaction cannot describe the pretreatment potential. The effectiveness of pretreatment was evaluated by the substrate pre-treatment followed by anaerobic digestibility of pretreated substrate.