Analysis of regional differences and decomposition of carbon emissions in China based on generalized divisia index method

除数指数 投资(军事) 碳纤维 发射强度 自然资源经济学 中国 温室气体 索引(排版) 环境科学 驱动因素 分解 经济 能量强度 环境经济学 高效能源利用 化学 工程类 生态学 数学 计算机科学 地理 政治学 离子 算法 法学 有机化学 考古 生物 万维网 电气工程 复合数 政治
作者
Yi-Sheng Liu,Meng Yang,Feiyu Cheng,Tian Jinzhao,Zhuoqun Du,Peng-Bo Song
出处
期刊:Energy [Elsevier BV]
卷期号:256: 124666-124666 被引量:14
标识
DOI:10.1016/j.energy.2022.124666
摘要

The achievement of China's carbon dioxide (CO 2 ) emission reduction target is of great significance in the face of global climate change. Accurate identification of key factors that affect CO 2 emissions can provide theoretical support to policymakers when designing related policies. Compared to the traditional method, the generalized Divisia index method (GDIM) can capture the influence of multiple scale factors on carbon emissions, providing new tools for studying the decomposition of carbon emissions. The article proposed a GDIM-based decomposition method to analyze the drivers that influence CO 2 emissions in China from 2000 to 2017. The results indicate that investment activity is the primary element in promoting China's carbon emissions, followed by energy use and economic activities. On the contrary, investment carbon intensity is the vital inhibitory factor, followed by GDP carbon intensity. Specifically, the positive driving force of investment and energy use is gradually weakening, while the contribution of economic activities is continuously strengthening. The effectiveness of carbon emission reduction in the Northeast, East, and Southwest is actively promoting China's carbon emission reduction, while the effectiveness of CO 2 emission reduction in the Northwest is not performing well. The findings provide support and reference for carbon emission control in China. • The GDIM is introduced to decompose carbon emissions. • Investment is the core driver leading to carbon emissions growth. • Investment carbon intensity is the primary factor in carbon reduction. • GDP's contribution towards carbon emissions growth is strengthening. • The carbon reduction in Northwest China still need to keep advancing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
jphu完成签到,获得积分10
3秒前
3秒前
wanci应助xyb采纳,获得10
3秒前
4秒前
Can完成签到,获得积分10
4秒前
于是乎完成签到 ,获得积分10
4秒前
DoctorYan完成签到,获得积分10
5秒前
奋斗若风完成签到,获得积分10
6秒前
7秒前
8秒前
斯文败类应助slin_sjtu采纳,获得10
9秒前
9秒前
丝丝发布了新的社区帖子
11秒前
墨墨叻发布了新的文献求助30
11秒前
钟D摆完成签到 ,获得积分10
11秒前
12秒前
jt发布了新的文献求助20
12秒前
13秒前
xyb完成签到,获得积分20
14秒前
完美世界应助J_C_Van采纳,获得10
14秒前
科研通AI2S应助KeYang采纳,获得10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
ganggang发布了新的文献求助10
17秒前
0p9ol8ik完成签到,获得积分10
17秒前
科目三应助yy采纳,获得10
18秒前
19秒前
小白发布了新的文献求助10
19秒前
20秒前
华仔应助科研通管家采纳,获得10
20秒前
我是老大应助科研通管家采纳,获得10
21秒前
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
yx_cheng应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952627
求助须知:如何正确求助?哪些是违规求助? 3498061
关于积分的说明 11090192
捐赠科研通 3228661
什么是DOI,文献DOI怎么找? 1785008
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801344