Bidirectional Spatial-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting

计算机科学 变压器 环境科学 工程类 电气工程 电压
作者
Changlu Chen,Yanbin Liu,Ling Chen,Chengqi Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 6913-6925 被引量:49
标识
DOI:10.1109/tnnls.2022.3183903
摘要

Urban traffic forecasting is the cornerstone of the intelligent transportation system (ITS). Existing methods focus on spatial-temporal dependency modeling, while two intrinsic properties of the traffic forecasting problem are overlooked. First, the complexity of diverse forecasting tasks is nonuniformly distributed across various spaces (e.g., suburb versus downtown) and times (e.g., rush hour versus off-peak). Second, the recollection of past traffic conditions is beneficial to the prediction of future traffic conditions. Based on these properties, we propose a bidirectional spatial-temporal adaptive transformer (Bi-STAT) for accurate traffic forecasting. Bi-STAT adopts an encoder–decoder architecture, where both the encoder and the decoder maintain a spatial-adaptive transformer and a temporal-adaptive transformer structure. Inspired by the first property, each transformer is designed to dynamically process the traffic streams according to their task complexities. Specifically, we realize this by the recurrent mechanism with a novel dynamic halting module (DHM). Each transformer performs iterative computation with shared parameters until DHM emits a stopping signal. Motivated by the second property, Bi-STAT utilizes one decoder to perform the present $\rightarrow $ past recollection task and the other decoder to perform the present $\rightarrow $ future prediction task. The recollection task supplies complementary information to assist and regularize the prediction task for a better generalization. Through extensive experiments, we show the effectiveness of each module in Bi-STAT and demonstrate the superiority of Bi-STAT over the state-of-the-art baselines on four benchmark datasets. The code is available at https://github.com/chenchl19941118/Bi-STAT.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
子凡应助科研通管家采纳,获得20
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
l玖应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
酶没美镁发布了新的文献求助10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
nenenn完成签到,获得积分10
3秒前
落林樾完成签到 ,获得积分10
5秒前
5秒前
阿潇完成签到 ,获得积分10
5秒前
Moonlight完成签到 ,获得积分10
6秒前
小蘑菇应助seventonight2采纳,获得10
6秒前
岁月流年完成签到,获得积分10
7秒前
诚心太君完成签到,获得积分10
7秒前
8秒前
9秒前
xi完成签到 ,获得积分10
9秒前
科研通AI2S应助务实天德采纳,获得10
10秒前
NexusExplorer应助务实天德采纳,获得10
10秒前
上官若男应助gan采纳,获得10
12秒前
12秒前
小马到处跑完成签到,获得积分10
12秒前
夏天的小沐沐完成签到,获得积分10
13秒前
haizz完成签到,获得积分10
19秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165215
求助须知:如何正确求助?哪些是违规求助? 2816263
关于积分的说明 7912059
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388