Bidirectional Spatial-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting

计算机科学 变压器 环境科学 工程类 电气工程 电压
作者
Changlu Chen,Yanbin Liu,Ling Chen,Chengqi Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 6913-6925 被引量:66
标识
DOI:10.1109/tnnls.2022.3183903
摘要

Urban traffic forecasting is the cornerstone of the intelligent transportation system (ITS). Existing methods focus on spatial-temporal dependency modeling, while two intrinsic properties of the traffic forecasting problem are overlooked. First, the complexity of diverse forecasting tasks is nonuniformly distributed across various spaces (e.g., suburb versus downtown) and times (e.g., rush hour versus off-peak). Second, the recollection of past traffic conditions is beneficial to the prediction of future traffic conditions. Based on these properties, we propose a bidirectional spatial-temporal adaptive transformer (Bi-STAT) for accurate traffic forecasting. Bi-STAT adopts an encoder–decoder architecture, where both the encoder and the decoder maintain a spatial-adaptive transformer and a temporal-adaptive transformer structure. Inspired by the first property, each transformer is designed to dynamically process the traffic streams according to their task complexities. Specifically, we realize this by the recurrent mechanism with a novel dynamic halting module (DHM). Each transformer performs iterative computation with shared parameters until DHM emits a stopping signal. Motivated by the second property, Bi-STAT utilizes one decoder to perform the present $\rightarrow $ past recollection task and the other decoder to perform the present $\rightarrow $ future prediction task. The recollection task supplies complementary information to assist and regularize the prediction task for a better generalization. Through extensive experiments, we show the effectiveness of each module in Bi-STAT and demonstrate the superiority of Bi-STAT over the state-of-the-art baselines on four benchmark datasets. The code is available at https://github.com/chenchl19941118/Bi-STAT.git .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
好多鱼爱学习完成签到 ,获得积分10
2秒前
拓木幸子完成签到,获得积分10
2秒前
正直芫发布了新的文献求助10
4秒前
4秒前
ossantu完成签到,获得积分10
4秒前
sxm1004完成签到,获得积分10
4秒前
sky发布了新的文献求助10
5秒前
llll完成签到,获得积分10
5秒前
都哥发布了新的文献求助10
6秒前
7秒前
弋沨完成签到,获得积分10
7秒前
8秒前
韩业民完成签到,获得积分10
8秒前
万能图书馆应助袁不评采纳,获得10
8秒前
9秒前
Visy发布了新的文献求助10
9秒前
10秒前
无限煎饼发布了新的文献求助10
10秒前
一只小学弱完成签到,获得积分10
11秒前
嗡嗡嗡完成签到,获得积分10
11秒前
moonnnnnnn完成签到,获得积分10
12秒前
弋沨发布了新的文献求助10
12秒前
sky完成签到,获得积分10
12秒前
12秒前
鱿鱼发布了新的文献求助10
13秒前
果果完成签到,获得积分20
13秒前
YYMY2022发布了新的文献求助10
14秒前
zzz完成签到,获得积分10
14秒前
15秒前
科研通AI6应助TTTTT采纳,获得10
15秒前
正太低音炮完成签到,获得积分10
15秒前
7788完成签到,获得积分10
15秒前
大美女完成签到,获得积分10
16秒前
仁爱雪晴发布了新的文献求助10
16秒前
Jared应助田天天采纳,获得10
17秒前
李西西完成签到,获得积分10
17秒前
聪明凡之应助爱博采纳,获得20
17秒前
李晓凤发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653053
求助须知:如何正确求助?哪些是违规求助? 4789236
关于积分的说明 15062819
捐赠科研通 4811737
什么是DOI,文献DOI怎么找? 2574034
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488422