Bidirectional Spatial-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting

计算机科学 变压器 环境科学 工程类 电气工程 电压
作者
Changlu Chen,Yanbin Liu,Ling Chen,Chengqi Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 6913-6925 被引量:66
标识
DOI:10.1109/tnnls.2022.3183903
摘要

Urban traffic forecasting is the cornerstone of the intelligent transportation system (ITS). Existing methods focus on spatial-temporal dependency modeling, while two intrinsic properties of the traffic forecasting problem are overlooked. First, the complexity of diverse forecasting tasks is nonuniformly distributed across various spaces (e.g., suburb versus downtown) and times (e.g., rush hour versus off-peak). Second, the recollection of past traffic conditions is beneficial to the prediction of future traffic conditions. Based on these properties, we propose a bidirectional spatial-temporal adaptive transformer (Bi-STAT) for accurate traffic forecasting. Bi-STAT adopts an encoder–decoder architecture, where both the encoder and the decoder maintain a spatial-adaptive transformer and a temporal-adaptive transformer structure. Inspired by the first property, each transformer is designed to dynamically process the traffic streams according to their task complexities. Specifically, we realize this by the recurrent mechanism with a novel dynamic halting module (DHM). Each transformer performs iterative computation with shared parameters until DHM emits a stopping signal. Motivated by the second property, Bi-STAT utilizes one decoder to perform the present $\rightarrow $ past recollection task and the other decoder to perform the present $\rightarrow $ future prediction task. The recollection task supplies complementary information to assist and regularize the prediction task for a better generalization. Through extensive experiments, we show the effectiveness of each module in Bi-STAT and demonstrate the superiority of Bi-STAT over the state-of-the-art baselines on four benchmark datasets. The code is available at https://github.com/chenchl19941118/Bi-STAT.git .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空格TNT发布了新的文献求助10
刚刚
刚刚
2秒前
炙热萝完成签到,获得积分10
2秒前
3秒前
3秒前
顺利的蘑菇完成签到 ,获得积分10
3秒前
大白完成签到,获得积分10
4秒前
RICK完成签到,获得积分20
4秒前
LUCKY完成签到,获得积分10
4秒前
顾矜应助聪明汉堡采纳,获得10
4秒前
Sylwren完成签到,获得积分10
4秒前
lalahei完成签到,获得积分10
4秒前
yangya发布了新的文献求助10
5秒前
黎簇完成签到 ,获得积分10
5秒前
cr7完成签到,获得积分10
6秒前
小爱完成签到,获得积分10
6秒前
6秒前
chen完成签到,获得积分10
6秒前
7秒前
7秒前
充电宝应助张李采纳,获得10
7秒前
田様应助无私代芹采纳,获得50
7秒前
我劝告了风完成签到,获得积分10
7秒前
8秒前
小小沙完成签到,获得积分10
8秒前
小蘑菇应助明明采纳,获得10
8秒前
星辰大海应助林慕然2023采纳,获得10
8秒前
语秋完成签到,获得积分10
8秒前
9秒前
黄柒柒完成签到,获得积分10
9秒前
Damian完成签到,获得积分10
9秒前
neo完成签到,获得积分10
9秒前
JIE完成签到,获得积分10
9秒前
9秒前
李美玥完成签到,获得积分10
10秒前
大白发布了新的文献求助10
10秒前
璇儿的发布了新的文献求助10
11秒前
11秒前
熊熊阁发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629273
求助须知:如何正确求助?哪些是违规求助? 4719812
关于积分的说明 14968585
捐赠科研通 4787320
什么是DOI,文献DOI怎么找? 2556296
邀请新用户注册赠送积分活动 1517408
关于科研通互助平台的介绍 1478125