Bidirectional Spatial-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting

计算机科学 变压器 环境科学 工程类 电气工程 电压
作者
Changlu Chen,Yanbin Liu,Ling Chen,Chengqi Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 6913-6925 被引量:66
标识
DOI:10.1109/tnnls.2022.3183903
摘要

Urban traffic forecasting is the cornerstone of the intelligent transportation system (ITS). Existing methods focus on spatial-temporal dependency modeling, while two intrinsic properties of the traffic forecasting problem are overlooked. First, the complexity of diverse forecasting tasks is nonuniformly distributed across various spaces (e.g., suburb versus downtown) and times (e.g., rush hour versus off-peak). Second, the recollection of past traffic conditions is beneficial to the prediction of future traffic conditions. Based on these properties, we propose a bidirectional spatial-temporal adaptive transformer (Bi-STAT) for accurate traffic forecasting. Bi-STAT adopts an encoder–decoder architecture, where both the encoder and the decoder maintain a spatial-adaptive transformer and a temporal-adaptive transformer structure. Inspired by the first property, each transformer is designed to dynamically process the traffic streams according to their task complexities. Specifically, we realize this by the recurrent mechanism with a novel dynamic halting module (DHM). Each transformer performs iterative computation with shared parameters until DHM emits a stopping signal. Motivated by the second property, Bi-STAT utilizes one decoder to perform the present $\rightarrow $ past recollection task and the other decoder to perform the present $\rightarrow $ future prediction task. The recollection task supplies complementary information to assist and regularize the prediction task for a better generalization. Through extensive experiments, we show the effectiveness of each module in Bi-STAT and demonstrate the superiority of Bi-STAT over the state-of-the-art baselines on four benchmark datasets. The code is available at https://github.com/chenchl19941118/Bi-STAT.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致梦玉发布了新的文献求助10
刚刚
Frank完成签到,获得积分10
刚刚
1秒前
7907完成签到,获得积分10
1秒前
zihanwang应助吴彦祖采纳,获得10
1秒前
2秒前
2秒前
眼睛大的小天鹅完成签到,获得积分10
2秒前
4秒前
4秒前
Rondab应助海的呼唤采纳,获得10
4秒前
asdf完成签到,获得积分10
5秒前
ll发布了新的文献求助30
5秒前
顾右发布了新的文献求助10
6秒前
longyuzhu完成签到,获得积分20
7秒前
无花果应助思维隋采纳,获得10
7秒前
7秒前
灵犀完成签到,获得积分10
8秒前
8秒前
9秒前
longyuzhu发布了新的文献求助10
10秒前
丘比特应助单薄的如之采纳,获得10
10秒前
田様应助愤怒的稀采纳,获得10
11秒前
asdf发布了新的文献求助10
11秒前
科研牛马完成签到,获得积分20
13秒前
14秒前
14秒前
14秒前
柠m发布了新的文献求助10
14秒前
淡定的老头完成签到,获得积分10
15秒前
小刘有个大梦想完成签到 ,获得积分10
16秒前
18秒前
科研牛马发布了新的文献求助10
19秒前
20秒前
21秒前
dalian完成签到,获得积分10
21秒前
21秒前
温柔以冬发布了新的文献求助10
21秒前
szzz完成签到,获得积分10
23秒前
英俊的铭应助王星星采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070