Efficient automatic 3D segmentation of cell nuclei for high-content screening

分割 人工智能 计算机科学 雅卡索引 模式识别(心理学) 集合(抽象数据类型) 精确性和召回率 核心 计算机视觉 生物 细胞生物学 程序设计语言
作者
Mariusz Marzec,Adam Piórkowski,Arkadiusz Gertych
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:23 (1)
标识
DOI:10.1186/s12859-022-04737-4
摘要

Abstract Background High-content screening (HCS) is a pre-clinical approach for the assessment of drug efficacy. On modern platforms, it involves fluorescent image capture using three-dimensional (3D) scanning microscopy. Segmentation of cell nuclei in 3D images is an essential prerequisite to quantify captured fluorescence in cells for screening. However, this segmentation is challenging due to variabilities in cell confluency, drug-induced alterations in cell morphology, and gradual degradation of fluorescence with the depth of scanning. Despite advances in algorithms for segmenting nuclei for HCS, robust 3D methods that are insensitive to these conditions are still lacking. Results We have developed an algorithm which first generates a 3D nuclear mask in the original images. Next, an iterative 3D marker-controlled watershed segmentation is applied to downsized images to segment adjacent nuclei under the mask. In the last step, borders of segmented nuclei are adjusted in the original images based on local nucleus and background intensities. The method was developed using a set of 10 3D images. Extensive tests on a separate set of 27 3D images containing 2,367 nuclei demonstrated that our method, in comparison with 6 reference methods, achieved the highest precision (PR = 0.97), recall (RE = 0.88) and F1-score (F1 = 0.93) of nuclei detection. The Jaccard index (JI = 0.83), which reflects the accuracy of nuclei delineation, was similar to that yielded by all reference approaches. Our method was on average more than twice as fast as the reference method that produced the best results. Additional tests carried out on three stacked 3D images comprising heterogenous nuclei yielded average PR = 0.96, RE = 0.84, F1 = 0.89, and JI = 0.80. Conclusions The high-performance metrics yielded by the proposed approach suggest that it can be used to reliably delineate nuclei in 3D images of monolayered and stacked cells exposed to cytotoxic drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气乐儿发布了新的文献求助10
1秒前
2秒前
华仔应助罗元正采纳,获得10
2秒前
3秒前
FashionBoy应助Eruri采纳,获得10
3秒前
Mandy发布了新的文献求助30
4秒前
包容的映天完成签到 ,获得积分10
6秒前
小仙女发布了新的文献求助10
6秒前
8秒前
徐小锤完成签到 ,获得积分10
8秒前
titamisulydia完成签到,获得积分10
10秒前
华仔应助nctrung1407采纳,获得10
10秒前
lvlv完成签到 ,获得积分20
10秒前
1234567发布了新的文献求助30
12秒前
彤光赫显完成签到 ,获得积分10
15秒前
冬瓜完成签到,获得积分10
15秒前
15秒前
ni完成签到,获得积分10
15秒前
舒桐发布了新的文献求助20
17秒前
17秒前
Eruri完成签到,获得积分10
17秒前
芒果柠檬完成签到,获得积分10
17秒前
完美世界应助司徒骁采纳,获得10
18秒前
18秒前
可靠橘子发布了新的文献求助10
18秒前
19秒前
友好的半仙完成签到,获得积分10
19秒前
19秒前
周周发布了新的文献求助10
21秒前
CipherSage应助禹平露采纳,获得10
22秒前
XZY发布了新的文献求助10
23秒前
Singularity应助chengchengcheng采纳,获得10
24秒前
旺旺发布了新的文献求助10
24秒前
可靠橘子完成签到,获得积分10
25秒前
白枫完成签到 ,获得积分10
28秒前
28秒前
互助遵法尚德完成签到,获得积分0
31秒前
调皮时光发布了新的文献求助10
31秒前
香蕉觅云应助高高问柳采纳,获得30
32秒前
yah发布了新的文献求助10
33秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168356
求助须知:如何正确求助?哪些是违规求助? 2819704
关于积分的说明 7927634
捐赠科研通 2479614
什么是DOI,文献DOI怎么找? 1321024
科研通“疑难数据库(出版商)”最低求助积分说明 632946
版权声明 602460