Efficient automatic 3D segmentation of cell nuclei for high-content screening

分割 人工智能 计算机科学 雅卡索引 模式识别(心理学) 集合(抽象数据类型) 精确性和召回率 核心 计算机视觉 生物 细胞生物学 程序设计语言
作者
Mariusz Marzec,Adam Piórkowski,Arkadiusz Gertych
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:23 (1)
标识
DOI:10.1186/s12859-022-04737-4
摘要

Abstract Background High-content screening (HCS) is a pre-clinical approach for the assessment of drug efficacy. On modern platforms, it involves fluorescent image capture using three-dimensional (3D) scanning microscopy. Segmentation of cell nuclei in 3D images is an essential prerequisite to quantify captured fluorescence in cells for screening. However, this segmentation is challenging due to variabilities in cell confluency, drug-induced alterations in cell morphology, and gradual degradation of fluorescence with the depth of scanning. Despite advances in algorithms for segmenting nuclei for HCS, robust 3D methods that are insensitive to these conditions are still lacking. Results We have developed an algorithm which first generates a 3D nuclear mask in the original images. Next, an iterative 3D marker-controlled watershed segmentation is applied to downsized images to segment adjacent nuclei under the mask. In the last step, borders of segmented nuclei are adjusted in the original images based on local nucleus and background intensities. The method was developed using a set of 10 3D images. Extensive tests on a separate set of 27 3D images containing 2,367 nuclei demonstrated that our method, in comparison with 6 reference methods, achieved the highest precision (PR = 0.97), recall (RE = 0.88) and F1-score (F1 = 0.93) of nuclei detection. The Jaccard index (JI = 0.83), which reflects the accuracy of nuclei delineation, was similar to that yielded by all reference approaches. Our method was on average more than twice as fast as the reference method that produced the best results. Additional tests carried out on three stacked 3D images comprising heterogenous nuclei yielded average PR = 0.96, RE = 0.84, F1 = 0.89, and JI = 0.80. Conclusions The high-performance metrics yielded by the proposed approach suggest that it can be used to reliably delineate nuclei in 3D images of monolayered and stacked cells exposed to cytotoxic drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
善学以致用应助探寻采纳,获得10
1秒前
2秒前
小可发布了新的文献求助10
2秒前
魏少爷发布了新的文献求助10
3秒前
冰红茶完成签到,获得积分10
4秒前
4秒前
田様应助ZX801采纳,获得10
4秒前
6秒前
Ai_niyou发布了新的文献求助10
6秒前
Y123完成签到,获得积分10
6秒前
烤全鱼呢完成签到,获得积分10
7秒前
慕青应助阳光的夏山采纳,获得10
8秒前
orixero应助小可采纳,获得10
8秒前
9秒前
冬冬发布了新的文献求助10
9秒前
ZX801发布了新的文献求助10
11秒前
nmm完成签到,获得积分10
11秒前
12秒前
可爱的函函应助flasher22采纳,获得10
13秒前
李爱国应助宋宋采纳,获得10
14秒前
ferny给ferny的求助进行了留言
14秒前
丰富莹芝完成签到,获得积分10
15秒前
研友_VZG7GZ应助背后飞柏采纳,获得10
15秒前
zjh完成签到,获得积分10
15秒前
糖璃发布了新的文献求助10
16秒前
16秒前
FashionBoy应助LC采纳,获得10
17秒前
徐合川发布了新的文献求助10
20秒前
20秒前
青青子衿完成签到 ,获得积分10
22秒前
23秒前
背后飞柏完成签到,获得积分10
24秒前
Sigramm发布了新的文献求助10
24秒前
思源应助柒月采纳,获得10
26秒前
脑洞疼应助li采纳,获得20
30秒前
zgh发布了新的文献求助10
31秒前
香蕉觅云应助linguobin采纳,获得10
31秒前
Akim应助晓巨人采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975814
求助须知:如何正确求助?哪些是违规求助? 3520123
关于积分的说明 11201020
捐赠科研通 3256502
什么是DOI,文献DOI怎么找? 1798347
邀请新用户注册赠送积分活动 877523
科研通“疑难数据库(出版商)”最低求助积分说明 806417