Resource Demand Prediction of Cloud Workloads Using an Attention-based GRU Model

计算机科学 资源(消歧) 云计算 资源配置 均方误差 数据挖掘 过程(计算) 人工神经网络 预测建模 时间序列 服务(商务) 机器学习 计算机网络 统计 经济 操作系统 经济 数学
作者
Wenjuan Shu,Fanping Zeng,Zhen Ling,Junyi Liu,Tingting Lu,Guozhu Chen
标识
DOI:10.1109/msn53354.2021.00071
摘要

Resources of cloud workloads can be automatically allocated according to the requirements of the application. In the long-term running process, resource requirements change dynamically. Insufficient allocation may lead to the decline of service quality, and excessive allocation will lead to the waste of resources. Therefore, it is crucial to accurately predict resource demand. This paper aims to improve resource utilization in the data center by predicting the resources required for each application. Resource demand forecasting understands and manages future resource needs by mining current and past resource usage patterns. Because we need to analyze time series data with long-term dependence and noise, it is challenging to predict future resource utilization.We designed and implemented an attention-based GRU model. The attention mechanism was added to the GRU model to quickly filter out valuable information from large amounts of data. We used the Azure and Alibaba cluster trace to train our neural network, and used three evaluation indicators RMSE, MAPE and R2 to evaluate our proposed method. The experimental results show that our prediction method has 4.5% improvements in RMSE evaluation criteria and 9.5% improvements in MAPE evaluation criteria compared with single GRU model (without attention mechanism) used. That is, the prediction model with the attention mechanism can improve the accuracy of resource prediction. At the same time, we also studied the influence of the window size on the experimental results, finding that the prediction results are more accurate as the window size increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丽丽发布了新的文献求助30
1秒前
Liuya发布了新的文献求助10
1秒前
我是站长才怪应助时光采纳,获得10
2秒前
顾矜应助柯南采纳,获得10
2秒前
独特冰安完成签到,获得积分10
3秒前
4秒前
5秒前
MOF@COF发布了新的文献求助10
5秒前
傅双庆发布了新的文献求助10
5秒前
7秒前
搜集达人应助MOF@COF采纳,获得10
9秒前
sjr完成签到,获得积分10
9秒前
董董完成签到,获得积分10
10秒前
猪猪hero发布了新的文献求助10
10秒前
华仔应助的安萱采纳,获得10
10秒前
今后应助Liuya采纳,获得10
12秒前
傲娇的青荷完成签到,获得积分10
14秒前
董董发布了新的文献求助10
14秒前
丘比特应助拓跋涵易采纳,获得10
14秒前
Orange应助yun采纳,获得10
15秒前
15秒前
认真路人完成签到 ,获得积分10
15秒前
cc完成签到,获得积分10
16秒前
YYY完成签到,获得积分10
16秒前
16秒前
bkagyin应助Lxx采纳,获得10
17秒前
Lila完成签到 ,获得积分10
17秒前
寒冷雨竹发布了新的文献求助10
18秒前
完美世界应助猪猪hero采纳,获得10
19秒前
糕手糕手糕糕手应助wx采纳,获得10
20秒前
bkagyin应助wx采纳,获得10
20秒前
研友_VZG7GZ应助赵ben山采纳,获得10
20秒前
21秒前
浮生若梦发布了新的文献求助10
21秒前
21秒前
26秒前
顺心冬易发布了新的文献求助10
27秒前
maox1aoxin应助午马未羊采纳,获得30
28秒前
29秒前
ding应助925采纳,获得10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313951
求助须知:如何正确求助?哪些是违规求助? 2946315
关于积分的说明 8529594
捐赠科研通 2621967
什么是DOI,文献DOI怎么找? 1434250
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650738