Resource Demand Prediction of Cloud Workloads Using an Attention-based GRU Model

计算机科学 资源(消歧) 云计算 资源配置 均方误差 数据挖掘 过程(计算) 人工神经网络 预测建模 时间序列 服务(商务) 机器学习 计算机网络 统计 经济 操作系统 经济 数学
作者
Wenjuan Shu,Fanping Zeng,Zhen Ling,Junyi Liu,Tingting Lu,Guozhu Chen
标识
DOI:10.1109/msn53354.2021.00071
摘要

Resources of cloud workloads can be automatically allocated according to the requirements of the application. In the long-term running process, resource requirements change dynamically. Insufficient allocation may lead to the decline of service quality, and excessive allocation will lead to the waste of resources. Therefore, it is crucial to accurately predict resource demand. This paper aims to improve resource utilization in the data center by predicting the resources required for each application. Resource demand forecasting understands and manages future resource needs by mining current and past resource usage patterns. Because we need to analyze time series data with long-term dependence and noise, it is challenging to predict future resource utilization.We designed and implemented an attention-based GRU model. The attention mechanism was added to the GRU model to quickly filter out valuable information from large amounts of data. We used the Azure and Alibaba cluster trace to train our neural network, and used three evaluation indicators RMSE, MAPE and R2 to evaluate our proposed method. The experimental results show that our prediction method has 4.5% improvements in RMSE evaluation criteria and 9.5% improvements in MAPE evaluation criteria compared with single GRU model (without attention mechanism) used. That is, the prediction model with the attention mechanism can improve the accuracy of resource prediction. At the same time, we also studied the influence of the window size on the experimental results, finding that the prediction results are more accurate as the window size increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mrmrer发布了新的文献求助10
刚刚
2秒前
MUSTer一一完成签到 ,获得积分10
2秒前
通通通完成签到,获得积分10
2秒前
2秒前
务实的菓完成签到 ,获得积分10
3秒前
似水流年完成签到,获得积分10
3秒前
An慧完成签到,获得积分10
3秒前
Hello应助阿金采纳,获得10
3秒前
3秒前
3秒前
5秒前
顾夏包完成签到,获得积分10
5秒前
小土豆发布了新的文献求助50
6秒前
科研通AI5应助跑在颖采纳,获得10
6秒前
追寻代真发布了新的文献求助10
7秒前
mrmrer完成签到,获得积分20
7秒前
7秒前
7秒前
毛慢慢发布了新的文献求助10
8秒前
8秒前
今天不学习明天变垃圾完成签到,获得积分10
8秒前
9秒前
9秒前
布布完成签到,获得积分10
10秒前
一独白发布了新的文献求助10
10秒前
周周完成签到 ,获得积分10
10秒前
淡然完成签到,获得积分10
11秒前
明理小土豆完成签到,获得积分10
11秒前
刘国建郭菱香完成签到,获得积分10
11秒前
嘤嘤嘤完成签到,获得积分10
11秒前
九川应助粱自中采纳,获得10
11秒前
无辜之卉完成签到,获得积分10
12秒前
无花果应助Island采纳,获得10
12秒前
12秒前
SHDeathlock发布了新的文献求助200
13秒前
Owen应助醒醒采纳,获得10
13秒前
无心的代桃完成签到,获得积分10
14秒前
追寻代真完成签到,获得积分10
14秒前
晓兴兴完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762