Auxiliary classification of cervical cells based on multi-domain hybrid deep learning framework

计算机科学 人工智能 卷积神经网络 深度学习 模式识别(心理学) 分类器(UML) 降维 支持向量机 聚类分析 散列函数 特征选择 计算机安全
作者
Chuanwang Zhang,Dongyao Jia,Ziqi Li,Nengkai Wu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:77: 103739-103739 被引量:1
标识
DOI:10.1016/j.bspc.2022.103739
摘要

• Multi-domain hybrid deep learning framework (MDHDN) is proposed for the classification of cervical cells. • Cell deep features from multi-domain (time and frequency) are extracted by the pretrained VGG-19 (Visual Geometry Group-19) with a hashing layer after the last fully connected layer. • Final cell diagnosis is generated by the correlation analysis on outputs of three subchannels. • The proposed approach obtains the similar performance with the state-of-the-art models using the novel structure, whose accuracy, sensitivity, and specificity are 98.7%, 98.2%, 98.9%. Computer-aided cervical cell classification using Pap smears or Thinprep cytologic test (TCT) have been widely applied as a high effective screening tool, by which the cells are classified into different subclasses. However, existing classification approaches mainly rely on single detection structure, like deep learning or hand-crafted methods, which have huge computation complexity and lower accuracy. So far, no cell spectrum is applied for classification. This paper addresses the limitations by making the first attempt to use the multi-domain hybrid deep learning framework (MDHDN) for the classification of cervical cells. Cell deep features from multi-domain (time and frequency) are extracted by the pretrained VGG-19 (Visual Geometry Group-19), which is the deep Convolutional Neural Network (CNN) with a hashing layer after the last fully connected layer. Hand-crafted features for the original images are processed with the feature selection, clustering and dimensionality reduction. Then the three subchannels of the proposed framework output the category results using the SVM classifier, the final cell diagnosis is generated by the correlation analysis. Results show that the proposed approach obtains the similar performance with the state-of-the-art models using the novel structure, whose accuracy, sensitivity, and specificity are 98.7%, 98.2%, 98.9% in Herlev dataset when applying five-fold cross-validation, respectively. Similar superior classification performance is achieved on the BJTU dataset, validation on the SIPaKMeD dataset also proves its generalization ability. The proposed novel screening framework is promising for the early diagnosis of cervical cancer, multi-domain and hybrid features are proved feasible in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助Nyxia采纳,获得10
刚刚
刚刚
英俊的铭应助热情孤丹采纳,获得10
刚刚
健忘瑾瑜完成签到,获得积分10
刚刚
roy_chiang发布了新的文献求助10
刚刚
1秒前
1秒前
kevin完成签到,获得积分10
1秒前
跳跃凡桃发布了新的文献求助10
2秒前
小马甲应助zjw采纳,获得10
2秒前
大鸣王潮完成签到,获得积分10
3秒前
钻石发布了新的文献求助10
3秒前
星辰大海应助椿上春树采纳,获得10
3秒前
秋慕蕊发布了新的文献求助10
3秒前
远方有个少年完成签到,获得积分10
3秒前
andy发布了新的文献求助30
3秒前
Abi发布了新的文献求助10
4秒前
李健应助曦子曦子采纳,获得10
4秒前
上官若男应助听话的亦云采纳,获得10
4秒前
大个应助kevin采纳,获得10
5秒前
zhangpeng发布了新的文献求助10
5秒前
徐biao发布了新的文献求助10
5秒前
Hello应助Damon采纳,获得10
5秒前
6秒前
6秒前
大鸣王潮发布了新的文献求助10
7秒前
7秒前
7秒前
秋暝寒衣发布了新的文献求助10
7秒前
Lds完成签到 ,获得积分10
7秒前
8秒前
科研通AI2S应助jjj采纳,获得10
8秒前
8秒前
9秒前
9秒前
ustina完成签到,获得积分10
10秒前
10秒前
23发布了新的文献求助10
10秒前
Owen应助Re采纳,获得10
11秒前
RoyKu完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246