冯诺依曼代数
组合数学
产品(数学)
数学
免费产品
标量(数学)
物理
量子力学
纯数学
几何学
群(周期表)
冯·诺依曼建筑
作者
Junsheng Fang,Don Hadwin,Xiujuan Ma
出处
期刊:Mathematica Scandinavica
[Aarhus University Library]
日期:2008-09-01
卷期号:103 (1): 77-77
被引量:2
标识
DOI:10.7146/math.scand.a-15070
摘要
We compute spectra and Brown measures of some non self-adjoint operators in $(M_2(\mathsf {C}), \frac{1}{2}\mathrm{Tr})*(M_2(\mathsf{C}), \frac{1}{2}\mathrm{Tr})$, the reduced free product von Neumann algebra of $M_2(\mathsf {C})$ with $M_2(\mathsf {C})$. Examples include $AB$ and $A+B$, where $A$ and $B$ are matrices in $(M_2(\mathsf {C}), \frac{1}{2}\mathrm{Tr})*1$ and $1*(M_2(\mathsf {C}), \frac{1}{2}\mathrm{Tr})$, respectively. We prove that $AB$ is an R-diagonal operator (in the sense of Nica and Speicher [12]) if and only if $\mathrm{Tr}(A)=\mathrm{Tr}(B)=0$. We show that if $X=AB$ or $X=A+B$ and $A,B$ are not scalar matrices, then the Brown measure of $X$ is not concentrated on a single point. By a theorem of Haagerup and Schultz [9], we obtain that if $X=AB$ or $X=A+B$ and $X\neq \lambda 1$, then $X$ has a nontrivial hyperinvariant subspace affiliated with $(M_2(\mathsf{C}), \frac{1}{2}\mathrm{Tr})*(M_2(\mathsf{C}), \frac{1}{2}\mathrm{Tr})$.
科研通智能强力驱动
Strongly Powered by AbleSci AI