低密度聚乙烯
聚乙烯
聚苯乙烯
辐照
化学
微塑料
傅里叶变换红外光谱
材料科学
光化学
分析化学(期刊)
核化学
化学工程
色谱法
有机化学
聚合物
环境化学
核物理学
工程类
物理
作者
Carmen Sorasan,Carlos Edo,Miguel González-Pleiter,Francisca Fernández‐Piñas,Francisco Leganés,Ana K. Rodriguez,Roberto Rosal
标识
DOI:10.1016/j.envpol.2021.117919
摘要
In this work, we studied the hydrolytic and photochemical degradation of three low-density polyethylene (LDPE) materials, within the size range of microplastics (MP). The MPs were exposed to mechanical agitation and UV irradiation equivalent to one year of solar UVB + UVA in a stirred photoreactor. Flow cytometry was used to track the formation of small (1–25 μm) MPs by applying Mie's theory to derive the size of MP particles from scattering intensity readings. The calculation was based on a calibration with polystyrene (PS) beads. The results showed that the generation of 1–5 μm MP reached 104-105 MPs in the 1–25 μm range per gram of LDPE. ATR-FTIR and micro-FTIR measurements evidenced the formation of oxygenated moieties, namely hydroxyl, carbonyl, and carbon-oxygen bonds, which increased with irradiation time. We also found evidence of the production of a high number of nanoplastics (<1 μm, NPs). The Dynamic Light Scattering size of secondary NPs was in the hundreds of nm range and might represent up to 1010 NPs per gram of LDPE. Our results allowed the unambiguous spectroscopic assessment of the generation of NPs from LDPE under conditions simulating environmental exposure to UV irradiation and used flow cytometry for the first-time to track the formation of secondary MPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI