Modelling soil hydraulic properties with an improved pore‐solid fractal (PSF) model through image analysis

分形 导水率 土壤科学 标准差 分形维数 环境科学 数学 土壤水分 统计 数学分析
作者
Xiaolong Sun,Dongli She,Hongde Wang,Yuanhang Fei,Lei Gao
出处
期刊:European Journal of Soil Science [Wiley]
卷期号:73 (1) 被引量:1
标识
DOI:10.1111/ejss.13156
摘要

Abstract Soil hydraulic properties are important for studying Earth science. The pore‐solid fractal (PSF) model, combined with a critical path analysis from percolation theory, seems to be more promising in the modelling of soil hydraulic properties. The accuracy of the PSF model depends on the accurate acquisition of fractal dimensions, which requires the combination of micro‐CT scanning and image analysis technology. In addition, there is a changepoint in soil water movement due to the coexistence of soil micro‐ and macromorphology. Determining the changepoint and using different fractal dimensions to predict hydraulic properties on different sides of the changepoint can further improve the accuracy of the PSF model. Therefore, in this study, we tested the changepoint in soil water movement and adopted an improved PSF model to predict hydraulic parameters in saline soil based on image analysis. The results showed that the two‐sample t ‐test could identify the changepoint accurately. There was only one changepoint in coastal saline soil when predicting hydraulic properties. Micro‐CT scanning and image analysis can obtain fractal dimensions more accurately and quickly. The coefficients of determination of all treatments were above 0.9. The improved PSF model was more accurate than the previous model in predicting soil hydraulic properties. A comparison of goodness‐of‐fit criteria showed that it is better to adopt the geometrical mean error ratio () and geometrical standard deviation error ratio () as the judgement standard. Due to the anisotropy of soil, the improved PSF model demonstrated a higher accuracy in predicting water content than hydraulic conductivity. The hydraulic conductivity prediction accuracy was negatively correlated with the degree of anisotropy () parameter, and the improved model was more suitable for soils with weak anisotropy. Our research can provide a simple and accurate method for parameter calculation of the PSF model to predict soil hydraulic properties more accurately. Highlights The two‐sample t‐test can find the changepoint accurately in the process of soil drying. Micro‐CT scanning and image analysis can calculate fractal dimension more accurately. The improved PSF model is more accurate when predicting soil hydraulic properties. Anisotropy is an important factor that restricts the prediction accuracy of PSF model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
将就小白完成签到,获得积分10
刚刚
刚刚
1秒前
兴奋书雪完成签到,获得积分20
1秒前
救赎完成签到,获得积分10
1秒前
2秒前
于芋菊完成签到,获得积分0
2秒前
中二少女爱喝可乐完成签到,获得积分10
2秒前
啦啦啦发布了新的文献求助30
2秒前
2秒前
2秒前
zr237618发布了新的文献求助10
3秒前
烂漫明轩完成签到,获得积分10
4秒前
刘佳敏完成签到 ,获得积分10
4秒前
4秒前
小闫完成签到,获得积分10
4秒前
卡卡龍特完成签到,获得积分10
4秒前
疯狂的科研小羊完成签到,获得积分10
5秒前
5秒前
小蘑菇应助哒哒哒采纳,获得10
5秒前
别喊我起床完成签到,获得积分10
5秒前
小茵茵完成签到,获得积分10
5秒前
火蓝完成签到,获得积分10
5秒前
5秒前
6秒前
hyd1640完成签到,获得积分10
6秒前
墨丿筠发布了新的文献求助10
6秒前
7秒前
meme完成签到,获得积分10
7秒前
桐桐应助开朗可行采纳,获得10
7秒前
科研通AI5应助ssss采纳,获得10
7秒前
7秒前
forg发布了新的文献求助10
8秒前
SQL完成签到 ,获得积分10
8秒前
小闫发布了新的文献求助10
9秒前
清秀的砖头完成签到,获得积分10
9秒前
Hum0ro98完成签到,获得积分10
9秒前
刘西西完成签到,获得积分10
9秒前
美丽的问安完成签到 ,获得积分10
9秒前
二十八完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912