Characterizing the Survival-Associated Interactions Between Tumor-Infiltrating Lymphocytes and Tumors From Pathological Images and Multi-Omics Data

组学 病态的 肿瘤浸润淋巴细胞 计算生物学 基因组学 计算机科学 小RNA 生物 生物信息学 基因组 医学 病理 免疫疗法 癌症 基因 遗传学
作者
Wei Shao,Yingli Zuo,Yangyang Shi,Yawen Wu,Jiao Tang,Junyong Zhao,Liang Sun,Zixiao Lu,Jianpeng Sheng,Qi Zhu,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 3025-3035 被引量:6
标识
DOI:10.1109/tmi.2023.3274652
摘要

The tumor-infiltrating lymphocytes (TILs) and its correlation with tumors have shown significant values in the development of cancers. Many observations indicated that the combination of the whole-slide pathological images (WSIs) and genomic data can better characterize the immunological mechanisms of TILs. However, the existing image-genomic studies evaluated the TILs by the combination of pathological image and single-type of omics data (e.g., mRNA), which is difficulty in assessing the underlying molecular processes of TILs holistically. Additionally, it is still very challenging to characterize the intersections between TILs and tumor regions in WSIs and the high dimensional genomic data also brings difficulty for the integrative analysis with WSIs. Based on the above considerations, we proposed an end-to-end deep learning framework i.e., IMO-TILs that can integrate pathological image with multi-omics data (i.e., mRNA and miRNA) to analyze TILs and explore the survival-associated interactions between TILs and tumors. Specifically, we firstly apply the graph attention network to describe the spatial interactions between TILs and tumor regions in WSIs. As to genomic data, the Concrete AutoEncoder (i.e., CAE) is adopted to select survival-associated Eigengenes from the high-dimensional multi-omics data. Finally, the deep generalized canonical correlation analysis (DGCCA) accompanied with the attention layer is implemented to fuse the image and multi-omics data for prognosis prediction of human cancers. The experimental results on three cancer cohorts derived from the Cancer Genome Atlas (TCGA) indicated that our method can both achieve higher prognosis results and identify consistent imaging and multi-omics bio-markers correlated strongly with the prognosis of human cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
漂亮白云完成签到 ,获得积分10
1秒前
DD发布了新的文献求助10
2秒前
2秒前
Atalanta完成签到,获得积分10
3秒前
3秒前
3秒前
领导范儿应助Gin采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
任润发布了新的文献求助10
6秒前
丘比特应助cheese采纳,获得10
7秒前
xaioyu发布了新的文献求助10
8秒前
8秒前
Andrew02应助kyokyo采纳,获得10
9秒前
情怀应助EED采纳,获得10
9秒前
情怀应助石火采纳,获得10
9秒前
加菲丰丰应助小彭采纳,获得20
10秒前
10秒前
11秒前
11秒前
无花果应助cultromics采纳,获得10
11秒前
研友_VZG7GZ应助我很开心采纳,获得10
12秒前
12秒前
12秒前
任润完成签到,获得积分10
13秒前
辛桥完成签到,获得积分10
13秒前
受伤的小松鼠完成签到,获得积分10
13秒前
积极的奇异果完成签到 ,获得积分10
14秒前
小武wwwww发布了新的文献求助10
15秒前
楠D完成签到,获得积分10
15秒前
dby发布了新的文献求助10
15秒前
竞鹤发布了新的文献求助10
15秒前
16秒前
心想事橙完成签到,获得积分10
16秒前
Gin发布了新的文献求助10
17秒前
华仔应助大方百招采纳,获得10
17秒前
17秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
BIOMIMETIC RESTORATIVE DENTISTRY (volume 2) 500
Product Class 10: Acridin-9(10H)-ones and Related Systems 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3177957
求助须知:如何正确求助?哪些是违规求助? 2828923
关于积分的说明 7969251
捐赠科研通 2490245
什么是DOI,文献DOI怎么找? 1327503
科研通“疑难数据库(出版商)”最低求助积分说明 635237
版权声明 602904