Characterizing the Survival-Associated Interactions Between Tumor-Infiltrating Lymphocytes and Tumors From Pathological Images and Multi-Omics Data

组学 病态的 肿瘤浸润淋巴细胞 计算生物学 基因组学 计算机科学 小RNA 生物 生物信息学 基因组 医学 病理 免疫疗法 癌症 基因 遗传学
作者
Wei Shao,Yingli Zuo,Yangyang Shi,Yawen Wu,Jiao Tang,Junyong Zhao,Liang Sun,Zixiao Lu,Jianpeng Sheng,Qi Zhu,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 3025-3035 被引量:10
标识
DOI:10.1109/tmi.2023.3274652
摘要

The tumor-infiltrating lymphocytes (TILs) and its correlation with tumors have shown significant values in the development of cancers. Many observations indicated that the combination of the whole-slide pathological images (WSIs) and genomic data can better characterize the immunological mechanisms of TILs. However, the existing image-genomic studies evaluated the TILs by the combination of pathological image and single-type of omics data (e.g., mRNA), which is difficulty in assessing the underlying molecular processes of TILs holistically. Additionally, it is still very challenging to characterize the intersections between TILs and tumor regions in WSIs and the high dimensional genomic data also brings difficulty for the integrative analysis with WSIs. Based on the above considerations, we proposed an end-to-end deep learning framework i.e., IMO-TILs that can integrate pathological image with multi-omics data (i.e., mRNA and miRNA) to analyze TILs and explore the survival-associated interactions between TILs and tumors. Specifically, we firstly apply the graph attention network to describe the spatial interactions between TILs and tumor regions in WSIs. As to genomic data, the Concrete AutoEncoder (i.e., CAE) is adopted to select survival-associated Eigengenes from the high-dimensional multi-omics data. Finally, the deep generalized canonical correlation analysis (DGCCA) accompanied with the attention layer is implemented to fuse the image and multi-omics data for prognosis prediction of human cancers. The experimental results on three cancer cohorts derived from the Cancer Genome Atlas (TCGA) indicated that our method can both achieve higher prognosis results and identify consistent imaging and multi-omics bio-markers correlated strongly with the prognosis of human cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花完成签到,获得积分20
刚刚
jhxie完成签到,获得积分10
1秒前
HXX19完成签到 ,获得积分10
3秒前
4秒前
Darsine完成签到,获得积分10
4秒前
张张完成签到,获得积分10
4秒前
kelly完成签到,获得积分10
4秒前
accepted发布了新的文献求助10
5秒前
5秒前
宇文天思完成签到,获得积分10
5秒前
gudujian870928完成签到,获得积分10
8秒前
幽默的太阳完成签到 ,获得积分10
8秒前
洁净斑马发布了新的文献求助10
9秒前
旺仔发布了新的文献求助30
9秒前
YAN完成签到,获得积分10
9秒前
虚拟莫茗完成签到 ,获得积分10
9秒前
无相完成签到 ,获得积分10
10秒前
Lucas应助zmx采纳,获得10
11秒前
崔康佳完成签到,获得积分10
13秒前
xueluxin完成签到 ,获得积分10
13秒前
yin完成签到,获得积分10
14秒前
黄花完成签到 ,获得积分10
14秒前
好名字完成签到,获得积分10
15秒前
ww完成签到,获得积分10
15秒前
17秒前
Tk完成签到,获得积分10
18秒前
研友_LX7478完成签到,获得积分10
18秒前
小张想发刊完成签到,获得积分10
18秒前
doin完成签到,获得积分10
22秒前
爱笑的访梦完成签到,获得积分10
22秒前
eee完成签到,获得积分10
23秒前
青藤完成签到,获得积分10
24秒前
自信向梦发布了新的文献求助10
24秒前
小老头儿完成签到,获得积分10
25秒前
和光同尘完成签到,获得积分20
28秒前
728完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
30秒前
lll完成签到,获得积分10
31秒前
研友_Z119gZ完成签到 ,获得积分10
31秒前
一点完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027