Comparison of pulmonary congestion severity using artificial intelligence‐assisted scoring versus clinical experts: A secondary analysis of BLUSHED‐AHF

医学 剪辑 人工智能 机器学习 内科学 计算机科学 外科
作者
Andrew J. Goldsmith,Mike Jin,Ruben T. Lucassen,Nicole Duggan,Nick Harrison,William M. Wells,Robert R. Ehrman,Robinson M. Ferre,Luna Gargani,Vicki E. Noble,Philip Levy,Katie Lane,Xiaochun Li,Sean P. Collins,Tina Kapur,Peter S. Pang,Frances M. Russell
出处
期刊:European Journal of Heart Failure [Wiley]
卷期号:25 (7): 1166-1169 被引量:2
标识
DOI:10.1002/ejhf.2881
摘要

Abstract Aim Acute decompensated heart failure (ADHF) is the leading cause of cardiovascular hospitalizations in the United States. Detecting B‐lines through lung ultrasound (LUS) can enhance clinicians' prognostic and diagnostic capabilities. Artificial intelligence/machine learning (AI/ML)‐based automated guidance systems may allow novice users to apply LUS to clinical care. We investigated whether an AI/ML automated LUS congestion score correlates with expert's interpretations of B‐line quantification from an external patient dataset. Methods and results This was a secondary analysis from the BLUSHED‐AHF study which investigated the effect of LUS‐guided therapy on patients with ADHF. In BLUSHED‐AHF, LUS was performed and B‐lines were quantified by ultrasound operators. Two experts then separately quantified the number of B‐lines per ultrasound video clip recorded. Here, an AI/ML‐based lung congestion score (LCS) was calculated for all LUS clips from BLUSHED‐AHF. Spearman correlation was computed between LCS and counts from each of the original three raters. A total of 3858 LUS clips were analysed on 130 patients. The LCS demonstrated good agreement with the two experts' B‐line quantification score ( r = 0.894, 0.882). Both experts' B‐line quantification scores had significantly better agreement with the LCS than they did with the ultrasound operator's score ( p < 0.005, p < 0.001). Conclusion Artificial intelligence/machine learning‐based LCS correlated with expert‐level B‐line quantification. Future studies are needed to determine whether automated tools may assist novice users in LUS interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钦点小黑完成签到 ,获得积分10
刚刚
CCsouljump完成签到,获得积分10
刚刚
科研通AI2S应助张女士采纳,获得10
1秒前
2秒前
今后应助陌路孤星采纳,获得10
2秒前
Giorgio应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
娇娇发布了新的文献求助10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
WM应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
chen应助科研通管家采纳,获得10
4秒前
科研通AI2S应助RawrRanger采纳,获得10
4秒前
4秒前
SY完成签到,获得积分10
5秒前
shi0331完成签到,获得积分10
5秒前
CCsouljump发布了新的文献求助10
7秒前
JamesPei应助bxyyy采纳,获得10
8秒前
魔幻的幻天完成签到,获得积分10
12秒前
14秒前
petrichor完成签到 ,获得积分10
14秒前
Ton汤完成签到,获得积分10
14秒前
爆米花应助坦率嫣娆采纳,获得30
15秒前
17秒前
赛因斯完成签到,获得积分10
18秒前
cocolu应助67采纳,获得10
20秒前
图里琛完成签到 ,获得积分10
21秒前
Tristan完成签到,获得积分10
22秒前
酷波er应助bodhi采纳,获得10
23秒前
霉小欧给萧水白的求助进行了留言
23秒前
24秒前
OA完成签到,获得积分10
24秒前
你的完成签到 ,获得积分10
25秒前
太吾墨完成签到,获得积分10
26秒前
27秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357992
求助须知:如何正确求助?哪些是违规求助? 2981207
关于积分的说明 8698390
捐赠科研通 2662842
什么是DOI,文献DOI怎么找? 1458101
科研通“疑难数据库(出版商)”最低求助积分说明 675045
邀请新用户注册赠送积分活动 666065