Comparison of pulmonary congestion severity using artificial intelligence‐assisted scoring versus clinical experts: A secondary analysis of BLUSHED‐AHF

医学 剪辑 人工智能 机器学习 内科学 计算机科学 外科
作者
Andrew J. Goldsmith,Mike Jin,Ruben T. Lucassen,Nicole Duggan,Nick Harrison,William M. Wells,Robert R. Ehrman,Robinson M. Ferre,Luna Gargani,Vicki E. Noble,Philip Levy,Katie Lane,Xiaochun Li,Sean P. Collins,Tina Kapur,Peter S. Pang,Frances M. Russell
出处
期刊:European Journal of Heart Failure [Wiley]
卷期号:25 (7): 1166-1169 被引量:2
标识
DOI:10.1002/ejhf.2881
摘要

Abstract Aim Acute decompensated heart failure (ADHF) is the leading cause of cardiovascular hospitalizations in the United States. Detecting B‐lines through lung ultrasound (LUS) can enhance clinicians' prognostic and diagnostic capabilities. Artificial intelligence/machine learning (AI/ML)‐based automated guidance systems may allow novice users to apply LUS to clinical care. We investigated whether an AI/ML automated LUS congestion score correlates with expert's interpretations of B‐line quantification from an external patient dataset. Methods and results This was a secondary analysis from the BLUSHED‐AHF study which investigated the effect of LUS‐guided therapy on patients with ADHF. In BLUSHED‐AHF, LUS was performed and B‐lines were quantified by ultrasound operators. Two experts then separately quantified the number of B‐lines per ultrasound video clip recorded. Here, an AI/ML‐based lung congestion score (LCS) was calculated for all LUS clips from BLUSHED‐AHF. Spearman correlation was computed between LCS and counts from each of the original three raters. A total of 3858 LUS clips were analysed on 130 patients. The LCS demonstrated good agreement with the two experts' B‐line quantification score ( r = 0.894, 0.882). Both experts' B‐line quantification scores had significantly better agreement with the LCS than they did with the ultrasound operator's score ( p < 0.005, p < 0.001). Conclusion Artificial intelligence/machine learning‐based LCS correlated with expert‐level B‐line quantification. Future studies are needed to determine whether automated tools may assist novice users in LUS interpretation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmm4完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
shelia发布了新的文献求助10
1秒前
2秒前
AleX完成签到,获得积分20
2秒前
3秒前
David发布了新的文献求助20
3秒前
4秒前
5秒前
科研通AI6.1应助LX采纳,获得10
5秒前
5秒前
duonicola完成签到,获得积分10
5秒前
Philip发布了新的文献求助10
6秒前
完美世界应助Winter采纳,获得10
6秒前
6秒前
闪闪天晴发布了新的文献求助10
7秒前
科研通AI6.1应助夜泊采纳,获得30
7秒前
7秒前
8秒前
yafen发布了新的文献求助10
8秒前
8秒前
萝卜应助瓜小采纳,获得10
8秒前
orixero应助mo采纳,获得10
9秒前
Jun完成签到 ,获得积分10
9秒前
9秒前
花哨发布了新的文献求助10
9秒前
科研通AI6应助Philip采纳,获得10
9秒前
9秒前
默默善愁发布了新的文献求助10
10秒前
佩奇发布了新的文献求助10
10秒前
lalala发布了新的文献求助10
10秒前
和谐续发布了新的文献求助10
11秒前
12秒前
研友_rLmrgn发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
Nini发布了新的文献求助10
12秒前
淡然谷秋发布了新的文献求助10
13秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743923
求助须知:如何正确求助?哪些是违规求助? 5416646
关于积分的说明 15348652
捐赠科研通 4884391
什么是DOI,文献DOI怎么找? 2625824
邀请新用户注册赠送积分活动 1574648
关于科研通互助平台的介绍 1531532