Comparison of pulmonary congestion severity using artificial intelligence‐assisted scoring versus clinical experts: A secondary analysis of BLUSHED‐AHF

医学 剪辑 人工智能 机器学习 内科学 计算机科学 外科
作者
Andrew J. Goldsmith,Mike Jin,Ruben T. Lucassen,Nicole Duggan,Nick Harrison,William M. Wells,Robert R. Ehrman,Robinson M. Ferre,Luna Gargani,Vicki E. Noble,Philip Levy,Katie Lane,Xiaochun Li,Sean P. Collins,Tina Kapur,Peter S. Pang,Frances M. Russell
出处
期刊:European Journal of Heart Failure [Wiley]
卷期号:25 (7): 1166-1169 被引量:2
标识
DOI:10.1002/ejhf.2881
摘要

Abstract Aim Acute decompensated heart failure (ADHF) is the leading cause of cardiovascular hospitalizations in the United States. Detecting B‐lines through lung ultrasound (LUS) can enhance clinicians' prognostic and diagnostic capabilities. Artificial intelligence/machine learning (AI/ML)‐based automated guidance systems may allow novice users to apply LUS to clinical care. We investigated whether an AI/ML automated LUS congestion score correlates with expert's interpretations of B‐line quantification from an external patient dataset. Methods and results This was a secondary analysis from the BLUSHED‐AHF study which investigated the effect of LUS‐guided therapy on patients with ADHF. In BLUSHED‐AHF, LUS was performed and B‐lines were quantified by ultrasound operators. Two experts then separately quantified the number of B‐lines per ultrasound video clip recorded. Here, an AI/ML‐based lung congestion score (LCS) was calculated for all LUS clips from BLUSHED‐AHF. Spearman correlation was computed between LCS and counts from each of the original three raters. A total of 3858 LUS clips were analysed on 130 patients. The LCS demonstrated good agreement with the two experts' B‐line quantification score ( r = 0.894, 0.882). Both experts' B‐line quantification scores had significantly better agreement with the LCS than they did with the ultrasound operator's score ( p < 0.005, p < 0.001). Conclusion Artificial intelligence/machine learning‐based LCS correlated with expert‐level B‐line quantification. Future studies are needed to determine whether automated tools may assist novice users in LUS interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
3秒前
ATAYA发布了新的文献求助10
4秒前
星瑆心发布了新的文献求助10
4秒前
Lazarus_x完成签到,获得积分10
5秒前
whm发布了新的文献求助10
6秒前
豆dou发布了新的文献求助10
8秒前
旭日东升完成签到 ,获得积分10
9秒前
yyyyou完成签到,获得积分10
10秒前
科研通AI5应助xlj采纳,获得10
12秒前
Jenny应助WZ0904采纳,获得10
12秒前
弘一完成签到,获得积分10
12秒前
郑zhenglanyou完成签到 ,获得积分10
13秒前
15秒前
忧子忘完成签到,获得积分10
15秒前
16秒前
foreverchoi完成签到,获得积分10
16秒前
HH完成签到,获得积分20
16秒前
17秒前
whm完成签到,获得积分10
17秒前
19秒前
邬傥完成签到,获得积分10
20秒前
tomato应助执着采纳,获得20
21秒前
大方嵩发布了新的文献求助10
21秒前
梓ccc完成签到,获得积分10
21秒前
21秒前
求助发布了新的文献求助10
22秒前
风雨1210发布了新的文献求助10
22秒前
22秒前
23秒前
小梁要加油完成签到,获得积分20
23秒前
Alpha发布了新的文献求助10
24秒前
刘鹏宇发布了新的文献求助10
25秒前
zhangscience完成签到,获得积分10
25秒前
可爱的函函应助若狂采纳,获得10
26秒前
小蘑菇应助阿美采纳,获得30
26秒前
科研通AI2S应助机智小虾米采纳,获得10
27秒前
充电宝应助Xx.采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808