Comparison of pulmonary congestion severity using artificial intelligence‐assisted scoring versus clinical experts: A secondary analysis of BLUSHED‐AHF

医学 剪辑 人工智能 机器学习 内科学 计算机科学 外科
作者
Andrew J. Goldsmith,Mike Jin,Ruben T. Lucassen,Nicole Duggan,Nick Harrison,William M. Wells,Robert R. Ehrman,Robinson M. Ferre,Luna Gargani,Vicki E. Noble,Philip Levy,Katie Lane,Xiaochun Li,Sean P. Collins,Tina Kapur,Peter S. Pang,Frances M. Russell
出处
期刊:European Journal of Heart Failure [Elsevier BV]
卷期号:25 (7): 1166-1169 被引量:2
标识
DOI:10.1002/ejhf.2881
摘要

Abstract Aim Acute decompensated heart failure (ADHF) is the leading cause of cardiovascular hospitalizations in the United States. Detecting B‐lines through lung ultrasound (LUS) can enhance clinicians' prognostic and diagnostic capabilities. Artificial intelligence/machine learning (AI/ML)‐based automated guidance systems may allow novice users to apply LUS to clinical care. We investigated whether an AI/ML automated LUS congestion score correlates with expert's interpretations of B‐line quantification from an external patient dataset. Methods and results This was a secondary analysis from the BLUSHED‐AHF study which investigated the effect of LUS‐guided therapy on patients with ADHF. In BLUSHED‐AHF, LUS was performed and B‐lines were quantified by ultrasound operators. Two experts then separately quantified the number of B‐lines per ultrasound video clip recorded. Here, an AI/ML‐based lung congestion score (LCS) was calculated for all LUS clips from BLUSHED‐AHF. Spearman correlation was computed between LCS and counts from each of the original three raters. A total of 3858 LUS clips were analysed on 130 patients. The LCS demonstrated good agreement with the two experts' B‐line quantification score ( r = 0.894, 0.882). Both experts' B‐line quantification scores had significantly better agreement with the LCS than they did with the ultrasound operator's score ( p < 0.005, p < 0.001). Conclusion Artificial intelligence/machine learning‐based LCS correlated with expert‐level B‐line quantification. Future studies are needed to determine whether automated tools may assist novice users in LUS interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
每篇文献都读懂完成签到,获得积分10
1秒前
霜二完成签到 ,获得积分10
2秒前
科研通AI5应助可靠的0采纳,获得10
3秒前
情怀应助Dr.Xu采纳,获得30
4秒前
5秒前
华仔应助安安采纳,获得10
7秒前
8秒前
10秒前
10秒前
碧蓝安露发布了新的文献求助10
12秒前
13秒前
Forty发布了新的文献求助10
13秒前
瑶瑶领先发布了新的文献求助10
15秒前
Milo完成签到,获得积分10
16秒前
wwho_O完成签到 ,获得积分10
16秒前
wgk发布了新的文献求助10
18秒前
呆橘完成签到 ,获得积分10
19秒前
21秒前
香蕉觅云应助小丸子采纳,获得10
23秒前
用户完成签到,获得积分10
24秒前
24秒前
哈哈哈哈怪完成签到,获得积分10
24秒前
26秒前
26秒前
睡觉觉完成签到,获得积分20
26秒前
26秒前
昏睡的乌冬面完成签到 ,获得积分10
27秒前
28秒前
FashionBoy应助sunlihao采纳,获得10
28秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
yyyyyyy发布了新的文献求助10
29秒前
30秒前
wang发布了新的文献求助10
31秒前
32秒前
hyukhae0809发布了新的文献求助10
33秒前
whatever应助柿柿如意采纳,获得10
33秒前
HSX完成签到,获得积分10
34秒前
睡觉觉发布了新的文献求助10
34秒前
小丸子发布了新的文献求助10
34秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Local and systemic effects of topical betulinic acid in a psoriasis-like inflammation model in mice 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980408
求助须知:如何正确求助?哪些是违规求助? 3524319
关于积分的说明 11220990
捐赠科研通 3261764
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879424
科研通“疑难数据库(出版商)”最低求助积分说明 807261