亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning models to predict daily actual evapotranspiration of citrus orchards under regulated deficit irrigation

蒸散量 特征选择 背景(考古学) 亏缺灌溉 机器学习 计算机科学 特征(语言学) 随机森林 多层感知器 灌溉调度 环境科学 水资源 农业工程 灌溉 人工智能 人工神经网络 灌溉管理 土壤水分 工程类 生态学 土壤科学 生物 古生物学 语言学 哲学
作者
Antonino Pagano,Federico Amato,Matteo Ippolito,Dario De,Daniele Croce,Antonio Motisi,Giuseppe Provenzano,Ilenia Tinnirello
出处
期刊:Ecological Informatics [Elsevier]
卷期号:76: 102133-102133 被引量:15
标识
DOI:10.1016/j.ecoinf.2023.102133
摘要

Precise estimations of actual evapotranspiration (ETa) are essential for various environmental issues, including those related to agricultural ecosystem sustainability and water management. Indeed, the increasing demands of agricultural production, coupled with increasingly frequent drought events in many parts of the world, necessitate a more careful evaluation of crop water requirements. Artificial Intelligence-based models represent a promising alternative to the most common measurement techniques, e.g. using expensive Eddy Covariance (EC) towers. In this context, the main challenges are choosing the best possible model and selecting the most representative features. The objective of this research is to evaluate two different machine learning algorithms, namely Multi-Layer Perceptron (MLP) and Random Forest (RF), to predict daily actual evapotranspiration (ETa) in a citrus orchard typical of the Mediterranean ecosystem using different feature combinations. With many features available coming from various infield sensors, a thorough analysis was performed to measure feature importance, scatter matrix observations, and Pearson's correlation coefficient calculation, which resulted in the selection of 12 promising feature combinations. The models were calibrated under regulated deficit irrigation (RDI) conditions to estimate ETa and save irrigation water. On average up to 38.5% water savings were obtained, compared to full irrigation. Moreover, among the different input variables adopted, the soil water content (SWC) feature appears to have a prominent role in the prediction of ETa. Indeed, the presented results show that by choosing the appropriate input features, the accuracy of the proposed machine learning models remains acceptable even when the number of features is reduced to only 4. The best performance was achieved by the Random Forest method, with seven input features, obtaining a root mean square error (RMSE) and a coefficient of determination (R2) of 0.39 mm/day and 0.84, respectively. Finally, the results show that the joint use of SWC, weather and satellite data significantly improves the performance of evapotranspiration forecasts compared to models using only meteorological variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoshoujun完成签到,获得积分10
1秒前
郗妫完成签到,获得积分10
5秒前
likemangren完成签到,获得积分10
45秒前
xz完成签到 ,获得积分10
55秒前
1分钟前
九九发布了新的文献求助10
1分钟前
summer完成签到 ,获得积分10
1分钟前
threewei发布了新的文献求助20
1分钟前
athena发布了新的文献求助10
1分钟前
winkyyang完成签到 ,获得积分10
1分钟前
1分钟前
threewei完成签到,获得积分10
1分钟前
杰帅发布了新的文献求助10
1分钟前
大模型应助YY采纳,获得10
1分钟前
等等完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
gaoshou完成签到,获得积分10
2分钟前
showrain完成签到,获得积分20
2分钟前
爱静静应助gaoshou采纳,获得10
2分钟前
showrain发布了新的文献求助10
2分钟前
Jason发布了新的文献求助10
2分钟前
西扬完成签到 ,获得积分10
2分钟前
3分钟前
Hua发布了新的文献求助10
3分钟前
Hua完成签到,获得积分10
4分钟前
瘦瘦瘦完成签到 ,获得积分10
5分钟前
喜悦兔子完成签到 ,获得积分10
5分钟前
斯文的苡完成签到,获得积分10
5分钟前
LJ徽完成签到 ,获得积分10
6分钟前
6分钟前
雪白的面包完成签到 ,获得积分10
6分钟前
wanci应助Aaaaaa瘾采纳,获得10
6分钟前
lixuebin完成签到 ,获得积分10
7分钟前
闪闪妍发布了新的文献求助10
7分钟前
绝尘完成签到,获得积分10
7分钟前
绝尘发布了新的文献求助20
7分钟前
科研通AI2S应助闪闪妍采纳,获得10
7分钟前
程住气完成签到 ,获得积分10
7分钟前
8分钟前
隐形曼青应助杰帅采纳,获得10
8分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790439
关于积分的说明 7795316
捐赠科研通 2446925
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626248
版权声明 601159