Machine learning models to predict daily actual evapotranspiration of citrus orchards under regulated deficit irrigation

蒸散量 特征选择 背景(考古学) 亏缺灌溉 机器学习 计算机科学 特征(语言学) 随机森林 多层感知器 灌溉调度 环境科学 水资源 农业工程 灌溉 人工智能 人工神经网络 灌溉管理 土壤水分 工程类 生态学 土壤科学 生物 古生物学 语言学 哲学
作者
Antonino Pagano,Federico Amato,Matteo Ippolito,Dario De,Daniele Croce,Antonio Motisi,Giuseppe Provenzano,Ilenia Tinnirello
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:76: 102133-102133 被引量:15
标识
DOI:10.1016/j.ecoinf.2023.102133
摘要

Precise estimations of actual evapotranspiration (ETa) are essential for various environmental issues, including those related to agricultural ecosystem sustainability and water management. Indeed, the increasing demands of agricultural production, coupled with increasingly frequent drought events in many parts of the world, necessitate a more careful evaluation of crop water requirements. Artificial Intelligence-based models represent a promising alternative to the most common measurement techniques, e.g. using expensive Eddy Covariance (EC) towers. In this context, the main challenges are choosing the best possible model and selecting the most representative features. The objective of this research is to evaluate two different machine learning algorithms, namely Multi-Layer Perceptron (MLP) and Random Forest (RF), to predict daily actual evapotranspiration (ETa) in a citrus orchard typical of the Mediterranean ecosystem using different feature combinations. With many features available coming from various infield sensors, a thorough analysis was performed to measure feature importance, scatter matrix observations, and Pearson's correlation coefficient calculation, which resulted in the selection of 12 promising feature combinations. The models were calibrated under regulated deficit irrigation (RDI) conditions to estimate ETa and save irrigation water. On average up to 38.5% water savings were obtained, compared to full irrigation. Moreover, among the different input variables adopted, the soil water content (SWC) feature appears to have a prominent role in the prediction of ETa. Indeed, the presented results show that by choosing the appropriate input features, the accuracy of the proposed machine learning models remains acceptable even when the number of features is reduced to only 4. The best performance was achieved by the Random Forest method, with seven input features, obtaining a root mean square error (RMSE) and a coefficient of determination (R2) of 0.39 mm/day and 0.84, respectively. Finally, the results show that the joint use of SWC, weather and satellite data significantly improves the performance of evapotranspiration forecasts compared to models using only meteorological variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
NIER完成签到,获得积分20
1秒前
陌陌发布了新的文献求助10
1秒前
penpen发布了新的文献求助10
1秒前
北欧海盗发布了新的文献求助10
1秒前
Nancy发布了新的文献求助30
1秒前
小人物完成签到,获得积分10
2秒前
幸福的小刺猬完成签到,获得积分10
2秒前
脑洞疼应助CATH采纳,获得10
2秒前
沉默的小天鹅应助叶子采纳,获得10
2秒前
2秒前
3秒前
张海缘完成签到,获得积分10
3秒前
3秒前
4秒前
在水一方应助接好运采纳,获得20
4秒前
SYLH应助wubin69采纳,获得10
4秒前
4秒前
ff发布了新的文献求助20
4秒前
4秒前
5秒前
九三完成签到,获得积分10
5秒前
孤独问旋完成签到,获得积分10
6秒前
yuiip发布了新的文献求助10
6秒前
7秒前
ZOEzoe发布了新的文献求助30
8秒前
研友_VZG7GZ应助苍耳采纳,获得30
9秒前
9秒前
yangyang发布了新的文献求助10
9秒前
tiasn关注了科研通微信公众号
9秒前
Unshouable发布了新的文献求助10
9秒前
如意冰棍完成签到 ,获得积分10
9秒前
10秒前
10秒前
OO圈圈发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
保持好心情完成签到 ,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653