Machine learning models to predict daily actual evapotranspiration of citrus orchards under regulated deficit irrigation

蒸散量 特征选择 背景(考古学) 亏缺灌溉 机器学习 计算机科学 特征(语言学) 随机森林 多层感知器 灌溉调度 环境科学 水资源 农业工程 灌溉 人工智能 人工神经网络 灌溉管理 土壤水分 工程类 生态学 土壤科学 古生物学 哲学 生物 语言学
作者
Antonino Pagano,Federico Amato,Matteo Ippolito,Dario De,Daniele Croce,Antonio Motisi,Giuseppe Provenzano,Ilenia Tinnirello
出处
期刊:Ecological Informatics [Elsevier]
卷期号:76: 102133-102133 被引量:49
标识
DOI:10.1016/j.ecoinf.2023.102133
摘要

Precise estimations of actual evapotranspiration (ETa) are essential for various environmental issues, including those related to agricultural ecosystem sustainability and water management. Indeed, the increasing demands of agricultural production, coupled with increasingly frequent drought events in many parts of the world, necessitate a more careful evaluation of crop water requirements. Artificial Intelligence-based models represent a promising alternative to the most common measurement techniques, e.g. using expensive Eddy Covariance (EC) towers. In this context, the main challenges are choosing the best possible model and selecting the most representative features. The objective of this research is to evaluate two different machine learning algorithms, namely Multi-Layer Perceptron (MLP) and Random Forest (RF), to predict daily actual evapotranspiration (ETa) in a citrus orchard typical of the Mediterranean ecosystem using different feature combinations. With many features available coming from various infield sensors, a thorough analysis was performed to measure feature importance, scatter matrix observations, and Pearson's correlation coefficient calculation, which resulted in the selection of 12 promising feature combinations. The models were calibrated under regulated deficit irrigation (RDI) conditions to estimate ETa and save irrigation water. On average up to 38.5% water savings were obtained, compared to full irrigation. Moreover, among the different input variables adopted, the soil water content (SWC) feature appears to have a prominent role in the prediction of ETa. Indeed, the presented results show that by choosing the appropriate input features, the accuracy of the proposed machine learning models remains acceptable even when the number of features is reduced to only 4. The best performance was achieved by the Random Forest method, with seven input features, obtaining a root mean square error (RMSE) and a coefficient of determination (R2) of 0.39 mm/day and 0.84, respectively. Finally, the results show that the joint use of SWC, weather and satellite data significantly improves the performance of evapotranspiration forecasts compared to models using only meteorological variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
F_ken发布了新的文献求助10
4秒前
iota发布了新的文献求助30
4秒前
酷波er应助2150号采纳,获得10
4秒前
大模型应助hh采纳,获得10
5秒前
学渣完成签到,获得积分10
5秒前
单于天宇完成签到,获得积分10
8秒前
8秒前
8秒前
Deannn778完成签到,获得积分10
9秒前
花笙完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
羊一完成签到 ,获得积分10
13秒前
tulips发布了新的文献求助10
14秒前
你嵙这个期刊没买完成签到 ,获得积分10
14秒前
16秒前
无为发布了新的文献求助10
17秒前
爱听歌的冷安完成签到,获得积分10
17秒前
18秒前
拟好啊完成签到,获得积分10
19秒前
科目三应助冷傲曼冬采纳,获得10
19秒前
zlk完成签到 ,获得积分10
21秒前
LC完成签到 ,获得积分10
21秒前
拟好啊发布了新的文献求助10
23秒前
25秒前
25秒前
25秒前
你好完成签到,获得积分10
26秒前
29秒前
harry发布了新的文献求助10
29秒前
30秒前
30秒前
31秒前
小詹同学完成签到 ,获得积分10
31秒前
如意元霜关注了科研通微信公众号
34秒前
34秒前
37秒前
DJsky123发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298643
求助须知:如何正确求助?哪些是违规求助? 4447181
关于积分的说明 13841710
捐赠科研通 4332612
什么是DOI,文献DOI怎么找? 2378257
邀请新用户注册赠送积分活动 1373533
关于科研通互助平台的介绍 1339134