数学
数学分析
拉普拉斯变换
Volterra积分方程
渐近展开
奇异积分
积分方程
奇点
系列(地层学)
二元分析
扩展系列
趋同(经济学)
代数数
代数方程
应用数学
非线性系统
古生物学
统计
物理
量子力学
经济增长
经济
生物
作者
Yassine Chakir,Hassan Safouhi
标识
DOI:10.1016/j.cam.2023.115378
摘要
We present a numerical method for solving the two-dimensional weakly singular Volterra integral equations of the first kind. The integral equation is first converted into algebraic form using the two-dimensional Laplace transform. We then derived the series expansion for large values, which is inverted term by term to provide the convergent series expansion of the solution for small values. The asymptotic expansion of the solution is extracted from the series expansions of the two-dimensional Laplace transform around the singularity points. The bivariate homogeneous two-point Padé approximants are used to improve convergence. Numerical results are provided to illustrate the accuracy of the method.
科研通智能强力驱动
Strongly Powered by AbleSci AI