A Novel Approach for Anomaly Detection in Vibration‐Based Structural Health Monitoring Using Autoencoders in Deep Learning

异常检测 结构健康监测 人工智能 异常(物理) 深度学习 计算机科学 振动 模式识别(心理学) 声学 工程类 结构工程 物理 凝聚态物理
作者
Fatih Yesevi Okur,Ahmet Can Altunışık,Ebru Kalkan
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2025 (1) 被引量:1
标识
DOI:10.1155/stc/5602604
摘要

Structural health monitoring (SHM) has been widely employed in civil infrastructures for a number of years. Real‐time monitoring of civil projects involves the utilization of diverse sensors. Nevertheless, accurately assessing the actual condition of a structure can pose challenges due to the existence of anomalies in the collected data. Abnormalities in this context often arise from a variety of factors, including extreme weather conditions, malfunctioning sensors, and structural impairments. The existing condition of anomaly detection is significantly impeded by this disparity. Online detection of anomalies in SHM data plays a crucial role in promptly assessing the status of structures and making informed decisions. In vibration‐based SHM, enhanced frequency domain decomposition (EFDD) is one of the most used methods in the frequency domain. The signal output obtained from EFDD also includes the frequencies of the structures, which is a holistic evaluation. The findings of frequency measurements are influenced by the presence of structural damages. Extracting damage‐sensitive characteristics from structural response has emerged as a complex task. Deep learning approaches have garnered growing interest due to their capacity to efficiently extract high‐level abstract features from raw data. Within the scope of the study, a novel approach based on anomaly detection of changes in the signal output obtained using the EFDD was developed with autoencoders in deep learning. The performance of the novel approach was examined depending on different noise ratios (0%, 0.5%, 1%, 1.5%, and 2.0%) using the Z24 Bridge dataset. In the autoencoder training model, an autoencoder model containing a 4 Conv1D layer encoder–decoder as 128 × 64 × 64 × 128 was designed. By using the signal data of the first singular values obtained with the EFDD method, grouping was made with the labels “training data (1260 pieces),” “undamaged new data (250 pieces),” and “damaged new data (320 pieces).” In addition, the upper limit of the reconstruction error was calculated as 810 using the training data in the autoencoder model. The filtered reconstruction error values obtained were compared under different noise levels. At the end of the study, it was concluded that the novel approach works effectively under different noises and can be used in anomaly detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
Zkz完成签到,获得积分10
1秒前
1秒前
ww发布了新的文献求助10
1秒前
2秒前
2秒前
大个应助略略略采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
Anesthesialy发布了新的文献求助10
4秒前
princekin完成签到,获得积分10
5秒前
5秒前
sjq完成签到,获得积分20
5秒前
Jbiolover应助笑点低忆南采纳,获得10
5秒前
Rampant完成签到,获得积分10
5秒前
曾峥发布了新的文献求助10
6秒前
6秒前
CodeCraft应助欻欻欻采纳,获得10
6秒前
7秒前
龚幻梦发布了新的文献求助10
8秒前
sujinyu发布了新的文献求助10
8秒前
行者完成签到,获得积分10
8秒前
keke完成签到,获得积分10
9秒前
9秒前
9秒前
冬瑶完成签到,获得积分10
10秒前
10秒前
11秒前
guangweiyan完成签到 ,获得积分10
12秒前
chenwang发布了新的文献求助10
12秒前
13秒前
曾峥完成签到,获得积分10
13秒前
斯文败类应助洁净的士晋采纳,获得10
13秒前
Stargazings发布了新的文献求助10
13秒前
nianlu完成签到,获得积分10
14秒前
略略略发布了新的文献求助10
14秒前
今后应助科研狗采纳,获得10
15秒前
轩辕山槐完成签到,获得积分10
15秒前
CodeCraft应助冬瑶采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348