A Novel Approach for Anomaly Detection in Vibration‐Based Structural Health Monitoring Using Autoencoders in Deep Learning

异常检测 结构健康监测 人工智能 异常(物理) 深度学习 计算机科学 振动 模式识别(心理学) 声学 工程类 结构工程 物理 凝聚态物理
作者
Fatih Yesevi Okur,Ahmet Can Altunışık,Ebru Kalkan
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2025 (1) 被引量:1
标识
DOI:10.1155/stc/5602604
摘要

Structural health monitoring (SHM) has been widely employed in civil infrastructures for a number of years. Real‐time monitoring of civil projects involves the utilization of diverse sensors. Nevertheless, accurately assessing the actual condition of a structure can pose challenges due to the existence of anomalies in the collected data. Abnormalities in this context often arise from a variety of factors, including extreme weather conditions, malfunctioning sensors, and structural impairments. The existing condition of anomaly detection is significantly impeded by this disparity. Online detection of anomalies in SHM data plays a crucial role in promptly assessing the status of structures and making informed decisions. In vibration‐based SHM, enhanced frequency domain decomposition (EFDD) is one of the most used methods in the frequency domain. The signal output obtained from EFDD also includes the frequencies of the structures, which is a holistic evaluation. The findings of frequency measurements are influenced by the presence of structural damages. Extracting damage‐sensitive characteristics from structural response has emerged as a complex task. Deep learning approaches have garnered growing interest due to their capacity to efficiently extract high‐level abstract features from raw data. Within the scope of the study, a novel approach based on anomaly detection of changes in the signal output obtained using the EFDD was developed with autoencoders in deep learning. The performance of the novel approach was examined depending on different noise ratios (0%, 0.5%, 1%, 1.5%, and 2.0%) using the Z24 Bridge dataset. In the autoencoder training model, an autoencoder model containing a 4 Conv1D layer encoder–decoder as 128 × 64 × 64 × 128 was designed. By using the signal data of the first singular values obtained with the EFDD method, grouping was made with the labels “training data (1260 pieces),” “undamaged new data (250 pieces),” and “damaged new data (320 pieces).” In addition, the upper limit of the reconstruction error was calculated as 810 using the training data in the autoencoder model. The filtered reconstruction error values obtained were compared under different noise levels. At the end of the study, it was concluded that the novel approach works effectively under different noises and can be used in anomaly detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
北沐完成签到,获得积分10
3秒前
希望天下0贩的0应助yan采纳,获得10
3秒前
3秒前
5秒前
6秒前
小谷完成签到,获得积分20
6秒前
呜呜呜完成签到,获得积分10
6秒前
ei123完成签到,获得积分10
7秒前
8秒前
一个发布了新的文献求助10
8秒前
8秒前
李繁蕊发布了新的文献求助10
9秒前
123完成签到,获得积分10
9秒前
10秒前
酷波er应助闪闪的绮波采纳,获得10
11秒前
444完成签到,获得积分20
11秒前
12秒前
情怀应助念心采纳,获得10
12秒前
13秒前
15秒前
pppsy完成签到,获得积分10
17秒前
简化为完成签到,获得积分10
18秒前
爱科研的罗罗完成签到,获得积分10
18秒前
Rondab应助mini采纳,获得10
18秒前
hhhhhhhh完成签到,获得积分20
18秒前
19秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
20秒前
hhhhhhhh发布了新的文献求助10
22秒前
22秒前
22秒前
逢场作戱__完成签到 ,获得积分10
23秒前
Bio应助科研通管家采纳,获得30
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
heyihao应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得30
23秒前
深情安青应助糕糕采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070