清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Novel Approach for Anomaly Detection in Vibration‐Based Structural Health Monitoring Using Autoencoders in Deep Learning

异常检测 结构健康监测 人工智能 异常(物理) 深度学习 计算机科学 振动 模式识别(心理学) 声学 工程类 结构工程 物理 凝聚态物理
作者
Fatih Yesevi Okur,Ahmet Can Altunışık,Ebru Kalkan
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2025 (1)
标识
DOI:10.1155/stc/5602604
摘要

Structural health monitoring (SHM) has been widely employed in civil infrastructures for a number of years. Real‐time monitoring of civil projects involves the utilization of diverse sensors. Nevertheless, accurately assessing the actual condition of a structure can pose challenges due to the existence of anomalies in the collected data. Abnormalities in this context often arise from a variety of factors, including extreme weather conditions, malfunctioning sensors, and structural impairments. The existing condition of anomaly detection is significantly impeded by this disparity. Online detection of anomalies in SHM data plays a crucial role in promptly assessing the status of structures and making informed decisions. In vibration‐based SHM, enhanced frequency domain decomposition (EFDD) is one of the most used methods in the frequency domain. The signal output obtained from EFDD also includes the frequencies of the structures, which is a holistic evaluation. The findings of frequency measurements are influenced by the presence of structural damages. Extracting damage‐sensitive characteristics from structural response has emerged as a complex task. Deep learning approaches have garnered growing interest due to their capacity to efficiently extract high‐level abstract features from raw data. Within the scope of the study, a novel approach based on anomaly detection of changes in the signal output obtained using the EFDD was developed with autoencoders in deep learning. The performance of the novel approach was examined depending on different noise ratios (0%, 0.5%, 1%, 1.5%, and 2.0%) using the Z24 Bridge dataset. In the autoencoder training model, an autoencoder model containing a 4 Conv1D layer encoder–decoder as 128 × 64 × 64 × 128 was designed. By using the signal data of the first singular values obtained with the EFDD method, grouping was made with the labels “training data (1260 pieces),” “undamaged new data (250 pieces),” and “damaged new data (320 pieces).” In addition, the upper limit of the reconstruction error was calculated as 810 using the training data in the autoencoder model. The filtered reconstruction error values obtained were compared under different noise levels. At the end of the study, it was concluded that the novel approach works effectively under different noises and can be used in anomaly detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jasmine完成签到 ,获得积分10
11秒前
吉祥高趙完成签到 ,获得积分10
25秒前
小小果妈完成签到 ,获得积分10
29秒前
奶糖喵完成签到 ,获得积分10
31秒前
hbuhfl完成签到 ,获得积分10
39秒前
一彤展翅完成签到,获得积分10
42秒前
49秒前
xun发布了新的文献求助10
53秒前
ally完成签到,获得积分10
1分钟前
li完成签到 ,获得积分10
1分钟前
kenchilie完成签到 ,获得积分10
1分钟前
属实有点拉胯完成签到 ,获得积分10
1分钟前
apckkk完成签到 ,获得积分10
2分钟前
2分钟前
SciKid524完成签到 ,获得积分10
2分钟前
chemlixy完成签到 ,获得积分10
2分钟前
cstp完成签到,获得积分10
2分钟前
mark33442完成签到,获得积分10
2分钟前
小美酱完成签到 ,获得积分10
2分钟前
淡然藏花完成签到 ,获得积分10
2分钟前
苏su完成签到 ,获得积分10
3分钟前
完美梨愁完成签到 ,获得积分10
3分钟前
苗条的小蜜蜂完成签到 ,获得积分10
3分钟前
爱撒娇的紫菜完成签到,获得积分10
3分钟前
zhao完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Kristina完成签到,获得积分10
3分钟前
雪山飞龙完成签到,获得积分10
3分钟前
小乙猪完成签到 ,获得积分0
3分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
charliechen完成签到 ,获得积分10
4分钟前
有魅力荟完成签到,获得积分20
4分钟前
keyan完成签到 ,获得积分10
4分钟前
Connie完成签到,获得积分10
5分钟前
zhilianghui0807完成签到 ,获得积分10
5分钟前
QiaoHL完成签到 ,获得积分10
5分钟前
5分钟前
Yolo完成签到 ,获得积分10
5分钟前
方琼燕完成签到 ,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571317
求助须知:如何正确求助?哪些是违规求助? 3141926
关于积分的说明 9444838
捐赠科研通 2843331
什么是DOI,文献DOI怎么找? 1562830
邀请新用户注册赠送积分活动 731326
科研通“疑难数据库(出版商)”最低求助积分说明 718524