Genetic interactions and pleiotropy in metabolic diseases: Insights from a comprehensive GWAS analysis

全基因组关联研究 生物 遗传建筑学 多效性 孟德尔随机化 遗传关联 遗传学 计算生物学 连锁不平衡 单核苷酸多态性 基因 数量性状位点 遗传变异 基因型 表型
作者
Jing Shen,Julong Pan,Gang Yu,Hui Cai,Hua Xu,Hanfei Yan,Yu Feng
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:28 (17) 被引量:2
标识
DOI:10.1111/jcmm.70045
摘要

Abstract This study offers insights into the genetic and biological connections between nine common metabolic diseases using data from genome‐wide association studies. Our goal is to unravel the genetic interactions and biological pathways of these complex diseases, enhancing our understanding of their genetic architecture. We employed a range of advanced analytical techniques to explore the genetic correlations and shared genetic variants of these diseases. These methods include Linked Disequilibrium Score Regression, High‐Definition Likelihood (HDL), genetic analysis combining multiplicity and annotation (GPA), two‐sample Mendelian randomization analyses, analysis under the multiplicity‐complex null hypothesis (PLACO), and Functional mapping and annotation of genetic associations (FUMA). Additionally, Bayesian co‐localization analyses were used to examine associations of specific loci across traits. Our study discovered significant genomic correlations and shared loci, indicating complex genetic interactions among these metabolic diseases. We found several shared single nucleotide variants and risk loci, notably highlighting the role of the immune system and endocrine pathways in these diseases. Particularly, rs2476601 and its associated gene PTPN22 appear to play a crucial role in the connection between type 2 diabetes mellitus, hypothyroidism/mucous oedema and hypoglycaemia. These findings enhance our understanding of the genetic underpinnings of these diseases and open new potential avenues for targeted therapeutic and preventive strategies. The results underscore the importance of considering pleiotropic effects in deciphering the genetic architecture of complex diseases, especially metabolic ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tzq发布了新的文献求助10
刚刚
LL发布了新的文献求助10
刚刚
小二郎应助bin采纳,获得10
1秒前
orixero应助开心的雁芙采纳,获得10
1秒前
小白发布了新的文献求助10
1秒前
007发布了新的文献求助10
2秒前
KristenStewart完成签到,获得积分10
3秒前
111发布了新的文献求助10
4秒前
4秒前
HEIKU应助药药采纳,获得10
4秒前
完美世界应助失眠的傲柔采纳,获得10
4秒前
5秒前
orixero应助ziying126采纳,获得10
5秒前
5秒前
玄学大哥完成签到,获得积分10
5秒前
WANGHONG发布了新的文献求助10
6秒前
6秒前
香蕉觅云应助卿相白衣采纳,获得10
6秒前
留胡子的含海完成签到,获得积分10
6秒前
菜菜来了发布了新的文献求助10
6秒前
慕青应助scienceljk采纳,获得10
7秒前
欢呼的莆完成签到,获得积分10
7秒前
端庄的皮卡丘完成签到,获得积分10
7秒前
8秒前
Eve丶Paopaoxuan应助毛毛哦啊采纳,获得10
9秒前
河中医朵花完成签到,获得积分10
9秒前
尤有完成签到,获得积分20
9秒前
不吃香菜完成签到 ,获得积分10
9秒前
9秒前
包谷冬完成签到 ,获得积分0
10秒前
Dr_Zhu发布了新的文献求助30
10秒前
kinase完成签到 ,获得积分10
10秒前
10秒前
10秒前
我是老大应助Gakay采纳,获得10
11秒前
良辰应助LL采纳,获得10
11秒前
故渊完成签到,获得积分10
11秒前
YIZHIZOU发布了新的文献求助10
11秒前
mjppsy发布了新的文献求助10
11秒前
AI倩完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3545222
求助须知:如何正确求助?哪些是违规求助? 3122418
关于积分的说明 9352069
捐赠科研通 2821058
什么是DOI,文献DOI怎么找? 1550893
邀请新用户注册赠送积分活动 722851
科研通“疑难数据库(出版商)”最低求助积分说明 713371